
UNIT-1(REVISED MATERIAL)UNIT-1(REVISED MATERIAL)UNIT-1(REVISED MATERIAL)UNIT-1(REVISED MATERIAL)

Striking feature of oops

• Emphasis is on data rather than procedure
• Programs are divided into what are known as objects.
• Data structure are assigned such that they characterize the objects.
• Functions that operate on the data of an object are tied together in

the data structure.
• Data is hidden and cannot be accessed by external functions.
• Objects may communicate with each other through functions.
• New data and functions can be added easily whenever necessary.
• Follows bottom up approach in program design.

• Emphasis is on data rather than procedure
• Programs are divided into what are known as objects.
• Data structure are assigned such that they characterize the objects.
• Functions that operate on the data of an object are tied together in

the data structure.
• Data is hidden and cannot be accessed by external functions.
• Objects may communicate with each other through functions.
• New data and functions can be added easily whenever necessary.
• Follows bottom up approach in program design.

Striking feature of oops

• Emphasis is on data rather than procedure
• Programs are divided into what are known as objects.
• Data structure are assigned such that they characterize the objects.
• Functions that operate on the data of an object are tied together in

the data structure.
• Data is hidden and cannot be accessed by external functions.
• Objects may communicate with each other through functions.
• New data and functions can be added easily whenever necessary.
• Follows bottom up approach in program design.

• Emphasis is on data rather than procedure
• Programs are divided into what are known as objects.
• Data structure are assigned such that they characterize the objects.
• Functions that operate on the data of an object are tied together in

the data structure.
• Data is hidden and cannot be accessed by external functions.
• Objects may communicate with each other through functions.
• New data and functions can be added easily whenever necessary.
• Follows bottom up approach in program design.

Characteristics of oops

• Following is the characteristics of groups:

• Classes

• Objects

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic binding

• Message passing

• Following is the characteristics of groups:

• Classes

• Objects

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic binding

• Message passing

Characteristics of oops

• Following is the characteristics of groups:

• Classes

• Objects

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic binding

• Message passing

• Following is the characteristics of groups:

• Classes

• Objects

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic binding

• Message passing

Classes

• It contains data and functions to manipulate on that data

• The entire set of data and function of object can be made user defined data type
with the help of a class.

• Once the class has been defined we can create any number of objects belonging to
that class.(Class is a collection of objects of similar type)

• Each object is associated with the data of the type class with which they are
created.

• By default the data members of the class are private.

• It contains data and functions to manipulate on that data

• The entire set of data and function of object can be made user defined data type
with the help of a class.

• Once the class has been defined we can create any number of objects belonging to
that class.(Class is a collection of objects of similar type)

• Each object is associated with the data of the type class with which they are
created.

• By default the data members of the class are private.

• It contains data and functions to manipulate on that data

• The entire set of data and function of object can be made user defined data type
with the help of a class.

• Once the class has been defined we can create any number of objects belonging to
that class.(Class is a collection of objects of similar type)

• Each object is associated with the data of the type class with which they are
created.

• By default the data members of the class are private.

• It contains data and functions to manipulate on that data

• The entire set of data and function of object can be made user defined data type
with the help of a class.

• Once the class has been defined we can create any number of objects belonging to
that class.(Class is a collection of objects of similar type)

• Each object is associated with the data of the type class with which they are
created.

• By default the data members of the class are private.

classes

SYNTAX: class classname
{
private:
data members;

public:
functions;

}

SYNTAX: class classname
{
private:
data members;

public:
functions;

}

objects

• Basic run time entities in object oriented system.
• They may represent a person,a place,a bankaccount,a table of data or

any item that the program has to handle.
• They may also represent user defined data such as vectors,time ,list

etc…
• Programming problem is analysed interms of objects and nature of

the communication between them.
• Program objects should be choosen so that they match closely with

the real world objects.

• Basic run time entities in object oriented system.
• They may represent a person,a place,a bankaccount,a table of data or

any item that the program has to handle.
• They may also represent user defined data such as vectors,time ,list

etc…
• Programming problem is analysed interms of objects and nature of

the communication between them.
• Program objects should be choosen so that they match closely with

the real world objects.

• Basic run time entities in object oriented system.
• They may represent a person,a place,a bankaccount,a table of data or

any item that the program has to handle.
• They may also represent user defined data such as vectors,time ,list

etc…
• Programming problem is analysed interms of objects and nature of

the communication between them.
• Program objects should be choosen so that they match closely with

the real world objects.

• Basic run time entities in object oriented system.
• They may represent a person,a place,a bankaccount,a table of data or

any item that the program has to handle.
• They may also represent user defined data such as vectors,time ,list

etc…
• Programming problem is analysed interms of objects and nature of

the communication between them.
• Program objects should be choosen so that they match closely with

the real world objects.

objects

• Objects are the variables of the type class
• Objects take up a space in memory and have an associated address.
• When a program is executed objects interact with each other by sending

messages to one another.
• For example,if ‘’customer’’ and ‘’account’’ are two objects in a

program,then the customer object may send a message to the account
object requesting for the bank balance.

• With the help of dot operator objects access the public data members of
the class

• Syntax: classname object name;
example: fruit mango;

• Objects are the variables of the type class
• Objects take up a space in memory and have an associated address.
• When a program is executed objects interact with each other by sending

messages to one another.
• For example,if ‘’customer’’ and ‘’account’’ are two objects in a

program,then the customer object may send a message to the account
object requesting for the bank balance.

• With the help of dot operator objects access the public data members of
the class

• Syntax: classname object name;
example: fruit mango;

• Objects are the variables of the type class
• Objects take up a space in memory and have an associated address.
• When a program is executed objects interact with each other by sending

messages to one another.
• For example,if ‘’customer’’ and ‘’account’’ are two objects in a

program,then the customer object may send a message to the account
object requesting for the bank balance.

• With the help of dot operator objects access the public data members of
the class

• Syntax: classname object name;
example: fruit mango;

• Objects are the variables of the type class
• Objects take up a space in memory and have an associated address.
• When a program is executed objects interact with each other by sending

messages to one another.
• For example,if ‘’customer’’ and ‘’account’’ are two objects in a

program,then the customer object may send a message to the account
object requesting for the bank balance.

• With the help of dot operator objects access the public data members of
the class

• Syntax: classname object name;
example: fruit mango;

#include<iostream.h>
#include<conio.h>
class add
{
private:
int a,b,c;
public:
{
void input()

{
cout<<“Enter the value of a and b”<<endl;
}

#include<iostream.h>
#include<conio.h>
class add
{
private:
int a,b,c;
public:
{
void input()

{
cout<<“Enter the value of a and b”<<endl;
}

Void process()
{
c=a+b;
}

void output()
{

cout<<“Answer=“<<c<<endl;
}

Void process()
{
c=a+b;
}

void output()
{

cout<<“Answer=“<<c<<endl;
}

Void main()
add a;
clrscr();
a.input();
a.process();
a.output();
getch();
}

Void main()
add a;
clrscr();
a.input();
a.process();
a.output();
getch();
}

s

Enter the value of a and b:50
60

Answer=110

Enter the value of a and b:50
60

Answer=110

Enter the value of a and b:50
60

Answer=110

Enter the value of a and b:50
60

Answer=110

Enter the value of a and b:
50
60
Answer=110

Enter the value of a and b:
50
60
Answer=110

DATA ENCAPSULATION

• The wrapping of data and function into a single unit is called data
encapsulation.

• This is one of the Striking feature of the class.

• Data is not accessible by the outside world and only those functions which
are wrapped in the class can acces it.

• This insulation of data from direct access by the program is called as data
hiding or information hiding.

• The wrapping of data and function into a single unit is called data
encapsulation.

• This is one of the Striking feature of the class.

• Data is not accessible by the outside world and only those functions which
are wrapped in the class can acces it.

• This insulation of data from direct access by the program is called as data
hiding or information hiding.

DATA ENCAPSULATION

• The wrapping of data and function into a single unit is called data
encapsulation.

• This is one of the Striking feature of the class.

• Data is not accessible by the outside world and only those functions which
are wrapped in the class can acces it.

• This insulation of data from direct access by the program is called as data
hiding or information hiding.

• The wrapping of data and function into a single unit is called data
encapsulation.

• This is one of the Striking feature of the class.

• Data is not accessible by the outside world and only those functions which
are wrapped in the class can acces it.

• This insulation of data from direct access by the program is called as data
hiding or information hiding.

DATA ABSTRACTION

• Abstraction: Representing the essential feature without including the
background details or explanation is called as data abstraction.

• Classes uses the concept of abstraction and are defined as a list of abstract
attributes (data members) such as weight,height,size,cost and functions to operate
on these attributes.

• These attributes are sometimes called as data members because they hold the
information.

• Abstraction: Representing the essential feature without including the
background details or explanation is called as data abstraction.

• Classes uses the concept of abstraction and are defined as a list of abstract
attributes (data members) such as weight,height,size,cost and functions to operate
on these attributes.

• These attributes are sometimes called as data members because they hold the
information.

• Abstraction: Representing the essential feature without including the
background details or explanation is called as data abstraction.

• Classes uses the concept of abstraction and are defined as a list of abstract
attributes (data members) such as weight,height,size,cost and functions to operate
on these attributes.

• These attributes are sometimes called as data members because they hold the
information.

• Abstraction: Representing the essential feature without including the
background details or explanation is called as data abstraction.

• Classes uses the concept of abstraction and are defined as a list of abstract
attributes (data members) such as weight,height,size,cost and functions to operate
on these attributes.

• These attributes are sometimes called as data members because they hold the
information.

DATA ABSTRACTION

• The function that operate on these data are sometimes called as
methods or member functions.

• Since the classes uses the concept of data abstraction it is called as
Abstract Data Type(ADT)

• The function that operate on these data are sometimes called as
methods or member functions.

• Since the classes uses the concept of data abstraction it is called as
Abstract Data Type(ADT)

• The function that operate on these data are sometimes called as
methods or member functions.

• Since the classes uses the concept of data abstraction it is called as
Abstract Data Type(ADT)

• The function that operate on these data are sometimes called as
methods or member functions.

• Since the classes uses the concept of data abstraction it is called as
Abstract Data Type(ADT)

INHERITANCE

• Inheritance is the process by which objects of one class acquire the properties of objects
of another class.

• Process of deriving a new class from the existing class is also called as inheritance.

• It supports the concept of hierchial classification.

• For example bird “robin”is a part of the class “flying birds” which again part of the class
“bird”.

• Each derived class shares common characteristics with the class from which it derived.

• Inheritance is the process by which objects of one class acquire the properties of objects
of another class.

• Process of deriving a new class from the existing class is also called as inheritance.

• It supports the concept of hierchial classification.

• For example bird “robin”is a part of the class “flying birds” which again part of the class
“bird”.

• Each derived class shares common characteristics with the class from which it derived.

• Inheritance is the process by which objects of one class acquire the properties of objects
of another class.

• Process of deriving a new class from the existing class is also called as inheritance.

• It supports the concept of hierchial classification.

• For example bird “robin”is a part of the class “flying birds” which again part of the class
“bird”.

• Each derived class shares common characteristics with the class from which it derived.

• Inheritance is the process by which objects of one class acquire the properties of objects
of another class.

• Process of deriving a new class from the existing class is also called as inheritance.

• It supports the concept of hierchial classification.

• For example bird “robin”is a part of the class “flying birds” which again part of the class
“bird”.

• Each derived class shares common characteristics with the class from which it derived.

• The concept of inheritance provides the concept of reusability.

• Reusability means we can add additional feature to the existing class
without modifying it.

• This is possible by deriving a new class from the existing one.

• The new class will have the combined feature of both these classes.

• Through inheritance we can eliminate redundant code and extend the use
of exisiting class

• The concept of inheritance provides the concept of reusability.

• Reusability means we can add additional feature to the existing class
without modifying it.

• This is possible by deriving a new class from the existing one.

• The new class will have the combined feature of both these classes.

• Through inheritance we can eliminate redundant code and extend the use
of exisiting class

• The concept of inheritance provides the concept of reusability.

• Reusability means we can add additional feature to the existing class
without modifying it.

• This is possible by deriving a new class from the existing one.

• The new class will have the combined feature of both these classes.

• Through inheritance we can eliminate redundant code and extend the use
of exisiting class

• The concept of inheritance provides the concept of reusability.

• Reusability means we can add additional feature to the existing class
without modifying it.

• This is possible by deriving a new class from the existing one.

• The new class will have the combined feature of both these classes.

• Through inheritance we can eliminate redundant code and extend the use
of exisiting class

POLYMORPHISM

• Ability to take more than one form.

• Polymorphism means one name,multiple forms

• Operation may exhibit different behaviours in different instance.

• Behaviour depends upon the type of data used in the operation.

• for example consider the operation of addition. For two numbers,operation will
generate a sum.

• Ability to take more than one form.

• Polymorphism means one name,multiple forms

• Operation may exhibit different behaviours in different instance.

• Behaviour depends upon the type of data used in the operation.

• for example consider the operation of addition. For two numbers,operation will
generate a sum.

• Ability to take more than one form.

• Polymorphism means one name,multiple forms

• Operation may exhibit different behaviours in different instance.

• Behaviour depends upon the type of data used in the operation.

• for example consider the operation of addition. For two numbers,operation will
generate a sum.

• Ability to take more than one form.

• Polymorphism means one name,multiple forms

• Operation may exhibit different behaviours in different instance.

• Behaviour depends upon the type of data used in the operation.

• for example consider the operation of addition. For two numbers,operation will
generate a sum.

POLYMORPHISM

• If the operands are strings ,then the operation will produce a third
string by concatenation.

• The process of making an operator to exhibit different behavior in
different instances is called as operator overloading.

• Making a single function to perform several task is called as function
overloading.

• If the operands are strings ,then the operation will produce a third
string by concatenation.

• The process of making an operator to exhibit different behavior in
different instances is called as operator overloading.

• Making a single function to perform several task is called as function
overloading.

• If the operands are strings ,then the operation will produce a third
string by concatenation.

• The process of making an operator to exhibit different behavior in
different instances is called as operator overloading.

• Making a single function to perform several task is called as function
overloading.

• If the operands are strings ,then the operation will produce a third
string by concatenation.

• The process of making an operator to exhibit different behavior in
different instances is called as operator overloading.

• Making a single function to perform several task is called as function
overloading.

Dynamic binding

• Binding refers to linking of a procedure call to the function to be
executed in response to the call.

• Dynamic binding (also known as late binding)means that the function
associated with the given procedure call is not known until the time
of the call at run time.

• A function call associated with a polymorphic reference depends on
the dynamic type of that reference.

• Binding refers to linking of a procedure call to the function to be
executed in response to the call.

• Dynamic binding (also known as late binding)means that the function
associated with the given procedure call is not known until the time
of the call at run time.

• A function call associated with a polymorphic reference depends on
the dynamic type of that reference.

• Binding refers to linking of a procedure call to the function to be
executed in response to the call.

• Dynamic binding (also known as late binding)means that the function
associated with the given procedure call is not known until the time
of the call at run time.

• A function call associated with a polymorphic reference depends on
the dynamic type of that reference.

• Binding refers to linking of a procedure call to the function to be
executed in response to the call.

• Dynamic binding (also known as late binding)means that the function
associated with the given procedure call is not known until the time
of the call at run time.

• A function call associated with a polymorphic reference depends on
the dynamic type of that reference.

Message passing

• Contains set of objects that communicate with each other by sending
and receiving information to one another.

• The process of programming in an object oriented
language.therefore,involves the following steps:

1.Creating classes that defines objects and their behavior.

2.Creating objects from class definition.

3.Establishing communication among objects.

• Contains set of objects that communicate with each other by sending
and receiving information to one another.

• The process of programming in an object oriented
language.therefore,involves the following steps:

1.Creating classes that defines objects and their behavior.

2.Creating objects from class definition.

3.Establishing communication among objects.

• Contains set of objects that communicate with each other by sending
and receiving information to one another.

• The process of programming in an object oriented
language.therefore,involves the following steps:

1.Creating classes that defines objects and their behavior.

2.Creating objects from class definition.

3.Establishing communication among objects.

• Contains set of objects that communicate with each other by sending
and receiving information to one another.

• The process of programming in an object oriented
language.therefore,involves the following steps:

1.Creating classes that defines objects and their behavior.

2.Creating objects from class definition.

3.Establishing communication among objects.

• Objects communicate with each other by sending and receiving
information much the same way as people pass messages to one another.

• A message for an object is the request for the execution of a procedure
(function)

• It will invoke(activate) a function in the receiving object that generate the
desired result.

• It involves specifying the name of the object,name of the function(message)
and the information to be sent.

• Objects communicate with each other by sending and receiving
information much the same way as people pass messages to one another.

• A message for an object is the request for the execution of a procedure
(function)

• It will invoke(activate) a function in the receiving object that generate the
desired result.

• It involves specifying the name of the object,name of the function(message)
and the information to be sent.

• Objects communicate with each other by sending and receiving
information much the same way as people pass messages to one another.

• A message for an object is the request for the execution of a procedure
(function)

• It will invoke(activate) a function in the receiving object that generate the
desired result.

• It involves specifying the name of the object,name of the function(message)
and the information to be sent.

• Objects communicate with each other by sending and receiving
information much the same way as people pass messages to one another.

• A message for an object is the request for the execution of a procedure
(function)

• It will invoke(activate) a function in the receiving object that generate the
desired result.

• It involves specifying the name of the object,name of the function(message)
and the information to be sent.

• employee.salary(name)

• object message information

• employee.salary(name)

• object message information

• employee.salary(name)

• object message information

• employee.salary(name)

• object message information

Decision control instructions

1)if statement
2)if else statement
3)Nested if else statement
if statement:
if (condition)
{
statements;
statements;

}

1)if statement
2)if else statement
3)Nested if else statement
if statement:
if (condition)
{
statements;
statements;

}

Decision control instructions

syntax:(if else statement)
if(condition)

{

statements;

statements;

}

else

{

statements;

statements;

}

syntax:(if else statement)
if(condition)

{

statements;

statements;

}

else

{

statements;

statements;

}

EVEN OR ODD using if else statement

#include<iostream.h>

#include<conio.h>

void main()

{

int n;

clrscr();

cout<<"Enter the value of n : "<<endl;

cin>>n;

if(n%2==0)

{

cout<<"Given number is Even"<<endl;

#include<iostream.h>

#include<conio.h>

void main()

{

int n;

clrscr();

cout<<"Enter the value of n : "<<endl;

cin>>n;

if(n%2==0)

{

cout<<"Given number is Even"<<endl;

EVEN OR ODD using if else statement

EVEN OR ODD USING IF ELSE

}

else

{

cout<<"Given number is Odd"<<endl;

}

getch();

}

Output :

Enter the value of n :

7

Given number is Odd

}

else

{

cout<<"Given number is Odd"<<endl;

}

getch();

}

Output :

Enter the value of n :

7

Given number is Odd

EVEN OR ODD USING IF ELSE

Nested if else:

If(condition)
{
Statement;

}
else
{
if(condition)
{
Statements;
}

If(condition)
{
Statement;

}
else
{
if(condition)
{
Statements;
}

else
{
Statements;
}

}

else
{
Statements;
}

}

GREATEST OF THREE NUMBER USING NESTED
IF ELSE

YES NO

YES NO
YES NO

A>B

A>C
YES NO

YES NO
YES NO

A>C

A IS GREATEST C IS
GREATEST

B>C

B IS
GREATES

T

GREATEST OF THREE NUMBER USING NESTED
IF ELSE

YES NO

YES NO
YES NO

YES NO

YES NO
YES NO

B>C

B IS
GREATES

T

C IS
GREATEST

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE
#include<iostream.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
cout<<"Enter the values of a ,b and c : "<<endl;
cin>>a>>b>>c;

#include<iostream.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
cout<<"Enter the values of a ,b and c : "<<endl;
cin>>a>>b>>c;

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE
#include<iostream.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
cout<<"Enter the values of a ,b and c : "<<endl;
cin>>a>>b>>c;

#include<iostream.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
cout<<"Enter the values of a ,b and c : "<<endl;
cin>>a>>b>>c;

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE
if(a>b)
{
if(a>c)
{
cout<<"a is greatest number"<<endl;
}
else
{
cout<<"c is greatest number"<<endl;
}
}

if(a>b)
{
if(a>c)
{
cout<<"a is greatest number"<<endl;
}
else
{
cout<<"c is greatest number"<<endl;
}
}

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE
else
{
if(b>c)
{
cout<<"b is greatest number"<<endl;

}

else
{
if(b>c)
{
cout<<"b is greatest number"<<endl;

}

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE
else
{
if(b>c)
{
cout<<"b is greatest number"<<endl;

}

else
{
if(b>c)
{
cout<<"b is greatest number"<<endl;

}

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE
else

{

cout<<"c is greatest number"<<endl;

}

}

getch();

}

else

{

cout<<"c is greatest number"<<endl;

}

}

getch();

}

GREATEST OF 3 NUMBERS USING NESTED IF
ELSE

OUTPUT:

Enter the values of a,b and c :

4

8

6

b is greatest number

Enter the values of a,b and c :

4

8

6

b is greatest number

Loop control instruction

1)WHILE LOOP
2)FOR LOOP
3)DO WHILE LOOP.

Loop control instruction

While loop

This is a loop structure,but an entry controlled loop.
The syntax is as follows:
while(condition is true)

{
action 1;

}
action2;

This is a loop structure,but an entry controlled loop.
The syntax is as follows:
while(condition is true)

{
action 1;

}
action2;

This is a loop structure,but an entry controlled loop.
The syntax is as follows:
while(condition is true)

{
action 1;

}
action2;

This is a loop structure,but an entry controlled loop.
The syntax is as follows:
while(condition is true)

{
action 1;

}
action2;

WHILE LOOP

NO
YES

START

INITIALISATION

NO
YES

INITIALISATION

TEST STOP

BODY OF THE
LOOP

INCREMENT

NO
YES

NO
YES

STOP

ADDITION OF TWO NUMBERS 3 times USING
WHILE LOOP
#include<iostream.h>

#include<conio.h>

void main()

{
int a,b,c,i;

i=1;

#include<iostream.h>

#include<conio.h>

void main()

{
int a,b,c,i;

i=1;

ADDITION OF TWO NUMBERS 3 times USING
WHILE LOOP

ADDITION OF TWO NUMBERS USING WHILE
LOOP
While(i<=3)
{
Cout<<“enter the value of a and b”<<endl;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
getch();
}

While(i<=3)
{
Cout<<“enter the value of a and b”<<endl;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
getch();
}

ADDITION OF TWO NUMBERS USING WHILE
LOOP
While(i<=3)
{
Cout<<“enter the value of a and b”<<endl;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
getch();
}

While(i<=3)
{
Cout<<“enter the value of a and b”<<endl;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
getch();
}

output

Enter the value of a and b:4
2

answer=6
Enter the value of a and b:4

3
answer=7

Enter the value of a and b:4
6

answer=10

Enter the value of a and b:4
2

answer=6
Enter the value of a and b:4

3
answer=7

Enter the value of a and b:4
6

answer=10

FACTORIAL OF GIVEN NUMBER USING WHILE
LOOP
#include<iostream.h>

#include<conio.h>

void main()

{
int i,n,fact;

i=1;
fact=1;

#include<iostream.h>

#include<conio.h>

void main()

{
int i,n,fact;

i=1;
fact=1;

FACTORIAL OF GIVEN NUMBER USING WHILE
LOOP

FACTORIAL OF GIVEN NUMBER USING WHILE
LOOP

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;
While(i<=n)
{
fact=fact*i;
i=i+1;
}
Cout<<“answer=“<<fact<<endl;
getch();
}

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;
While(i<=n)
{
fact=fact*i;
i=i+1;
}
Cout<<“answer=“<<fact<<endl;
getch();
}

FACTORIAL OF GIVEN NUMBER USING WHILE
LOOP

FACTORIAL OF GIVEN NUMBER USING
whileLOOP

OUTPUT:
Enter the value of n 3

answer=6

OUTPUT:
Enter the value of n 3

answer=6

FACTORIAL OF GIVEN NUMBER USING
whileLOOP

Sum of n numbers using while loop

#include<iostream.h>
#include<conio.h>
void main()
{

int i,n,sum;
i = 1;
sum = 0;
clrscr();
cout<<"Enter the value of n : "<<endl;
cin>>n;

#include<iostream.h>
#include<conio.h>
void main()
{

int i,n,sum;
i = 1;
sum = 0;
clrscr();
cout<<"Enter the value of n : "<<endl;
cin>>n;

Sum of n numbers using while loop

Sum of n numbers using while loop

while(i<=n)

{

sum = sum + i;

i = i+1;

}

cout<<"Answer : "<<sum<<endl;

getch();

}

while(i<=n)

{

sum = sum + i;

i = i+1;

}

cout<<"Answer : "<<sum<<endl;

getch();

}

Sum of n numbers using while loop

output

Enter the value of n:3
Answer:6

FOR LOOP

The for is an entry controlled loop and is used when an action is to be
repeated for a predetermined number of times .
SYNTAX FOR FOOL LOOP:
for(initialization;condition;increment)

{
statemets;

}

The for is an entry controlled loop and is used when an action is to be
repeated for a predetermined number of times .
SYNTAX FOR FOOL LOOP:
for(initialization;condition;increment)

{
statemets;

}

The for is an entry controlled loop and is used when an action is to be
repeated for a predetermined number of times .
SYNTAX FOR FOOL LOOP:
for(initialization;condition;increment)

{
statemets;

}

The for is an entry controlled loop and is used when an action is to be
repeated for a predetermined number of times .
SYNTAX FOR FOOL LOOP:
for(initialization;condition;increment)

{
statemets;

}

ADDITION OF TWO NUMBERS 3 times USING
for LOOP
#include<iostream.h>

#include<conio.h>

void main()

{
int a,b,c,i;

#include<iostream.h>

#include<conio.h>

void main()

{
int a,b,c,i;

ADDITION OF TWO NUMBERS 3 times USING
for LOOP

ADDITION OF TWO NUMBERS USING for
LOOP
for(i=1;i<=3;i++)
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
}
getch();
}

for(i=1;i<=3;i++)
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
}
getch();
}

ADDITION OF TWO NUMBERS USING for
LOOP
for(i=1;i<=3;i++)
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
}
getch();
}

for(i=1;i<=3;i++)
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
}
getch();
}

output

Enter the value of a and b:4
2

answer=6
Enter the value of a and b:4

3
answer=7

Enter the value of a and b:4
6

answer=10

Enter the value of a and b:4
2

answer=6
Enter the value of a and b:4

3
answer=7

Enter the value of a and b:4
6

answer=10

Factorial of given number using for loop

#include<iostream.h>

#include<conio.h>

void main()

{
int i,n,fact;

fact=1;

#include<iostream.h>

#include<conio.h>

void main()

{
int i,n,fact;

fact=1;

Factorial of given number using for loop

FACTORIAL OF GIVEN NUMBER USING FOR
LOOP

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;

for(i=1;i<=n;i++)
{
fact=fact*i;

}
Cout<<“answer=“<<fact<<endl;
getch();
}

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;

for(i=1;i<=n;i++)
{
fact=fact*i;

}
Cout<<“answer=“<<fact<<endl;
getch();
}

FACTORIAL OF GIVEN NUMBER USING FOR
LOOP

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;

for(i=1;i<=n;i++)
{
fact=fact*i;

}
Cout<<“answer=“<<fact<<endl;
getch();
}

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;

for(i=1;i<=n;i++)
{
fact=fact*i;

}
Cout<<“answer=“<<fact<<endl;
getch();
}

FOR FACTORIAL OF GIVEN NUMBER USING
FOR FOR LOOP

OUTPUT:
Enter the value of n 3

answer=6

OUTPUT:
Enter the value of n 3

answer=6

FOR FACTORIAL OF GIVEN NUMBER USING
FOR FOR LOOP

Do while statement

The do while is an exit controlled loop.Based on a condition,the
control is transfered back to a particular point in the program.
The syntax is as follows.
do
{

Action1
}

While (condition is true);
action2;

The do while is an exit controlled loop.Based on a condition,the
control is transfered back to a particular point in the program.
The syntax is as follows.
do
{

Action1
}

While (condition is true);
action2;

The do while is an exit controlled loop.Based on a condition,the
control is transfered back to a particular point in the program.
The syntax is as follows.
do
{

Action1
}

While (condition is true);
action2;

The do while is an exit controlled loop.Based on a condition,the
control is transfered back to a particular point in the program.
The syntax is as follows.
do
{

Action1
}

While (condition is true);
action2;

DO WHILE LOOP

SYNTAX:
do
{
Statements;
}
While(condition)
{
Statements;
}

SYNTAX:
do
{
Statements;
}
While(condition)
{
Statements;
}

ADDITION OF TWO NUMBERS USING DO
WHILE LOOP
#include<iostream.h>

#include<conio.h>

void main()

{
int a,b,c,i;

i=1;

#include<iostream.h>

#include<conio.h>

void main()

{
int a,b,c,i;

i=1;

ADDITION OF TWO NUMBERS USING DO
WHILE LOOP

ADDITION OF TWO NUMBERS(3 times) USING
DO WHILE LOOP
do
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
While(i<=3)
getch();
}

do
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
While(i<=3)
getch();
}

ADDITION OF TWO NUMBERS(3 times) USING
DO WHILE LOOP
do
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
While(i<=3)
getch();
}

do
{
Cout<<“enter the value of a and b”<<endl;
Cin>>a>>b;
C=a+b;
Cout<<“answer=“<<c<<endl;
i=i+1;
}
While(i<=3)
getch();
}

output

Enter the value of a and b:4
2

answer=6
Enter the value of a and b:4

3
answer=7

Enter the value of a and b:4
6

answer=10

Enter the value of a and b:4
2

answer=6
Enter the value of a and b:4

3
answer=7

Enter the value of a and b:4
6

answer=10

Switch case

Switch statement is the multiple branching statement where based on the
condition,the control is transfered to one of the many possible points.
#include<iostream.h>
#include<conio.h>
void main()
{
float a,b,c;
int opt;
clrscr();

Switch statement is the multiple branching statement where based on the
condition,the control is transfered to one of the many possible points.
#include<iostream.h>
#include<conio.h>
void main()
{
float a,b,c;
int opt;
clrscr();

Switch statement is the multiple branching statement where based on the
condition,the control is transfered to one of the many possible points.
#include<iostream.h>
#include<conio.h>
void main()
{
float a,b,c;
int opt;
clrscr();

Switch statement is the multiple branching statement where based on the
condition,the control is transfered to one of the many possible points.
#include<iostream.h>
#include<conio.h>
void main()
{
float a,b,c;
int opt;
clrscr();

cout<<"Enter the value of a and b : "<<endl;
cin>>a>>b;
cout<<"1.Addition"<<endl;
cout<<"2.Subtraction"<<endl;
cout<<"3.Multiplication"<<endl;
cout<<"4.Division"<<endl;
cout<<"Enter the option : "<<endl;

cout<<"Enter the value of a and b : "<<endl;
cin>>a>>b;
cout<<"1.Addition"<<endl;
cout<<"2.Subtraction"<<endl;
cout<<"3.Multiplication"<<endl;
cout<<"4.Division"<<endl;
cout<<"Enter the option : "<<endl;

cout<<"Enter the value of a and b : "<<endl;
cin>>a>>b;
cout<<"1.Addition"<<endl;
cout<<"2.Subtraction"<<endl;
cout<<"3.Multiplication"<<endl;
cout<<"4.Division"<<endl;
cout<<"Enter the option : "<<endl;

cout<<"Enter the value of a and b : "<<endl;
cin>>a>>b;
cout<<"1.Addition"<<endl;
cout<<"2.Subtraction"<<endl;
cout<<"3.Multiplication"<<endl;
cout<<"4.Division"<<endl;
cout<<"Enter the option : "<<endl;

cin>>opt;
switch(opt)
{
case 1 :
c = a + b;
cout<<"Answer : "<<c<<endl;
break;
case 2 :
c = a - b;
cout<<"Answer : "<<c<<endl;
break;

cin>>opt;
switch(opt)
{
case 1 :
c = a + b;
cout<<"Answer : "<<c<<endl;
break;
case 2 :
c = a - b;
cout<<"Answer : "<<c<<endl;
break;

case 3 :
c = a * b;
cout<<"Answer : "<<c<<endl;
break;
case 4 :
c = a / b;
cout<<"Answer : "<<c<<endl;
break;
default :
cout<<"Invalid option"<<endl;
break;

case 3 :
c = a * b;
cout<<"Answer : "<<c<<endl;
break;
case 4 :
c = a / b;
cout<<"Answer : "<<c<<endl;
break;
default :
cout<<"Invalid option"<<endl;
break;

}
getch();
}

Output :
Enter the value of a and b :
2
3
1.Addition
2.Subtraction
3.Multiplication
4.Division
Enter the option :
1
Answer : 5

}
getch();
}

Output :
Enter the value of a and b :
2
3
1.Addition
2.Subtraction
3.Multiplication
4.Division
Enter the option :
1
Answer : 5

Basic data types

• C++ DATA
TYPES

USER DEFINED
DATA TYPE

1.STRUCTURE
2UNION
3.CLASS

4.ENUMERATION
..

FLOAT

USER DEFINED
DATA TYPE

1.STRUCTURE
2UNION
3.CLASS

4.ENUMERATION
..

BUILT IN DATA
TYPE

INTEGRAL
TYPE VOID FLOATING

TYPE

CHAR

FLOAT

DERIVED DATA
DERIVED TYPE

1.ARRAY
2.FUNCTION
3.POINTER

FLOAT

DERIVED DATA
DERIVED TYPE

1.ARRAY
2.FUNCTION
3.POINTER

FLOATING
TYPE

FLOAT

Manipulators in c++

• Manipulators are operators used in c++ for formatting the output.
• The data is manipulated by the programmer choice of display.
• Types of manipulators:
• Setfill()-used to fill the character
• Setw()-It is used to specify the minimum no of character position,a variable

will consume.It takes the integer variable as its only parameter.
• Setprecision()-use to set the floating point precision
• Setbase()-used to convert the base of one numeric value to another value
• setiosflags()-manipulator which is used to format the manner in which the

output data is displayed
• resetiosflags()-used to clear the flags.

• Manipulators are operators used in c++ for formatting the output.
• The data is manipulated by the programmer choice of display.
• Types of manipulators:
• Setfill()-used to fill the character
• Setw()-It is used to specify the minimum no of character position,a variable

will consume.It takes the integer variable as its only parameter.
• Setprecision()-use to set the floating point precision
• Setbase()-used to convert the base of one numeric value to another value
• setiosflags()-manipulator which is used to format the manner in which the

output data is displayed
• resetiosflags()-used to clear the flags.

• Manipulators are operators used in c++ for formatting the output.
• The data is manipulated by the programmer choice of display.
• Types of manipulators:
• Setfill()-used to fill the character
• Setw()-It is used to specify the minimum no of character position,a variable

will consume.It takes the integer variable as its only parameter.
• Setprecision()-use to set the floating point precision
• Setbase()-used to convert the base of one numeric value to another value
• setiosflags()-manipulator which is used to format the manner in which the

output data is displayed
• resetiosflags()-used to clear the flags.

• Manipulators are operators used in c++ for formatting the output.
• The data is manipulated by the programmer choice of display.
• Types of manipulators:
• Setfill()-used to fill the character
• Setw()-It is used to specify the minimum no of character position,a variable

will consume.It takes the integer variable as its only parameter.
• Setprecision()-use to set the floating point precision
• Setbase()-used to convert the base of one numeric value to another value
• setiosflags()-manipulator which is used to format the manner in which the

output data is displayed
• resetiosflags()-used to clear the flags.

Program-1

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{
cout<<setfill('*’);
cout<<setw(5)<<"1"<<endl;
cout<<setw(5)<<"10"<<endl;
cout<<setw(5)<<"101"<<endl;
getch();
}

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{
cout<<setfill('*’);
cout<<setw(5)<<"1"<<endl;
cout<<setw(5)<<"10"<<endl;
cout<<setw(5)<<"101"<<endl;
getch();
}

Program-1

Output :
***3
***10

**101

Output :
***3
***10

**101

Program-2

To set precise value for floating value
#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{
clrscr();

cout<<setprecision(2)<<22/7.0<<endl;
cout<<setprecision(3)<<22/7.0<<endl;

cout<<setprecision(4)<<22/7.0<<endl;
getch();

}

To set precise value for floating value
#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{
clrscr();

cout<<setprecision(2)<<22/7.0<<endl;
cout<<setprecision(3)<<22/7.0<<endl;

cout<<setprecision(4)<<22/7.0<<endl;
getch();

}

Output :
3.14
3.143
3.1429

Output :
3.14
3.143
3.1429

Program-3

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()
{
clrscr();

cout<<setfill('*’);
cout<<setw(10)<<setiosflags(ios::left)<<"RAM"<<endl;
cout<<setw(10)<<setiosflags(ios::right)<<"VENKAT"<<endl;
cout<<setiosflags(ios::showpos)<<100<<endl;
getch();
}

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()
{
clrscr();

cout<<setfill('*’);
cout<<setw(10)<<setiosflags(ios::left)<<"RAM"<<endl;
cout<<setw(10)<<setiosflags(ios::right)<<"VENKAT"<<endl;
cout<<setiosflags(ios::showpos)<<100<<endl;
getch();
}

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()
{
clrscr();

cout<<setfill('*’);
cout<<setw(10)<<setiosflags(ios::left)<<"RAM"<<endl;
cout<<setw(10)<<setiosflags(ios::right)<<"VENKAT"<<endl;
cout<<setiosflags(ios::showpos)<<100<<endl;
getch();
}

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()
{
clrscr();

cout<<setfill('*’);
cout<<setw(10)<<setiosflags(ios::left)<<"RAM"<<endl;
cout<<setw(10)<<setiosflags(ios::right)<<"VENKAT"<<endl;
cout<<setiosflags(ios::showpos)<<100<<endl;
getch();
}

Output :
RAM*******
****VENKAT
+100

Output :
RAM*******
****VENKAT
+100

Program-4(NUMBER CONVERSION USING
MANIPULATORS)

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()
{

clrscr();
cout<<setbase(8)<<65<<endl;
cout<<setbase(16)<<65<<endl;
getch();
}

Output :
101
41

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()
{

clrscr();
cout<<setbase(8)<<65<<endl;
cout<<setbase(16)<<65<<endl;
getch();
}

Output :
101
41

Program-4(NUMBER CONVERSION USING
MANIPULATORS)

Type conversion

• It is basically a conversion from one type to another type.
• Types:
• Implicit type conversion
• Explicit type conversion.
• Implicit type conversion:
• If a compiler converts one data into another data type automatically it

is calles implicit type conversion.
• There is no data loss here.

• It is basically a conversion from one type to another type.
• Types:
• Implicit type conversion
• Explicit type conversion.
• Implicit type conversion:
• If a compiler converts one data into another data type automatically it

is calles implicit type conversion.
• There is no data loss here.

• It is basically a conversion from one type to another type.
• Types:
• Implicit type conversion
• Explicit type conversion.
• Implicit type conversion:
• If a compiler converts one data into another data type automatically it

is calles implicit type conversion.
• There is no data loss here.

• It is basically a conversion from one type to another type.
• Types:
• Implicit type conversion
• Explicit type conversion.
• Implicit type conversion:
• If a compiler converts one data into another data type automatically it

is calles implicit type conversion.
• There is no data loss here.

Example:
int b=a;

Explicit type conversion:
• When data of one type is converted explicity into another data type

with the help of predefined function is called explicit type conversion.
• There is a data loss.

Example:
int b=a;

Explicit type conversion:
• When data of one type is converted explicity into another data type

with the help of predefined function is called explicit type conversion.
• There is a data loss.

Example:
int b=a;

Explicit type conversion:
• When data of one type is converted explicity into another data type

with the help of predefined function is called explicit type conversion.
• There is a data loss.

Example:
int b=a;

Explicit type conversion:
• When data of one type is converted explicity into another data type

with the help of predefined function is called explicit type conversion.
• There is a data loss.

STATIC DATA MEMBERS

• A dat member of a class can be qualified as static.
• The properties of static member variable are similar to C static

variable.
• Static member variables has certain characteristic
• 1.It is initialized to zero when the first when the object of the class is

created.No other initailisation is permitted.
• Only one copy of that member is created for the entire class and is

shared by all the objects of that class,no matter how many objects
are created.

• It is visible only within the class,but it life time is the entire program.

• A dat member of a class can be qualified as static.
• The properties of static member variable are similar to C static

variable.
• Static member variables has certain characteristic
• 1.It is initialized to zero when the first when the object of the class is

created.No other initailisation is permitted.
• Only one copy of that member is created for the entire class and is

shared by all the objects of that class,no matter how many objects
are created.

• It is visible only within the class,but it life time is the entire program.

STATIC DATA MEMBERS

• A dat member of a class can be qualified as static.
• The properties of static member variable are similar to C static

variable.
• Static member variables has certain characteristic
• 1.It is initialized to zero when the first when the object of the class is

created.No other initailisation is permitted.
• Only one copy of that member is created for the entire class and is

shared by all the objects of that class,no matter how many objects
are created.

• It is visible only within the class,but it life time is the entire program.

• A dat member of a class can be qualified as static.
• The properties of static member variable are similar to C static

variable.
• Static member variables has certain characteristic
• 1.It is initialized to zero when the first when the object of the class is

created.No other initailisation is permitted.
• Only one copy of that member is created for the entire class and is

shared by all the objects of that class,no matter how many objects
are created.

• It is visible only within the class,but it life time is the entire program.

• Static variables are normally used to maintain values common to the
entire class

• Static member function:
• Like static variable we can also have static member functions.A

member function that is declared static has the following properties.
• A)A static function can have access to only other static variable

(functions or variables)in the same class. is follows
• B)A static member function can be called using the class

name(instead of its objects) as follows:
• Class name :: function-name;

• Static variables are normally used to maintain values common to the
entire class

• Static member function:
• Like static variable we can also have static member functions.A

member function that is declared static has the following properties.
• A)A static function can have access to only other static variable

(functions or variables)in the same class. is follows
• B)A static member function can be called using the class

name(instead of its objects) as follows:
• Class name :: function-name;

• Static variables are normally used to maintain values common to the
entire class

• Static member function:
• Like static variable we can also have static member functions.A

member function that is declared static has the following properties.
• A)A static function can have access to only other static variable

(functions or variables)in the same class. is follows
• B)A static member function can be called using the class

name(instead of its objects) as follows:
• Class name :: function-name;

• Static variables are normally used to maintain values common to the
entire class

• Static member function:
• Like static variable we can also have static member functions.A

member function that is declared static has the following properties.
• A)A static function can have access to only other static variable

(functions or variables)in the same class. is follows
• B)A static member function can be called using the class

name(instead of its objects) as follows:
• Class name :: function-name;

• UNIT 2(REVISED)• UNIT 2(REVISED)

Inline and outline functions:

• The functions which are declared and defined inside the class is called as
inline functions.

• The functions which are declared inside the class and defined outside
the class is called as outline function.

Syntax:(for definining the function outside the class)
return type classname :: function name

{
statements;
}

:: is called as scope resolution operator which is used to define the member
function outside the class.

• The functions which are declared and defined inside the class is called as
inline functions.

• The functions which are declared inside the class and defined outside
the class is called as outline function.

Syntax:(for definining the function outside the class)
return type classname :: function name

{
statements;
}

:: is called as scope resolution operator which is used to define the member
function outside the class.

Inline and outline functions:

• The functions which are declared and defined inside the class is called as
inline functions.

• The functions which are declared inside the class and defined outside
the class is called as outline function.

Syntax:(for definining the function outside the class)
return type classname :: function name

{
statements;
}

:: is called as scope resolution operator which is used to define the member
function outside the class.

• The functions which are declared and defined inside the class is called as
inline functions.

• The functions which are declared inside the class and defined outside
the class is called as outline function.

Syntax:(for definining the function outside the class)
return type classname :: function name

{
statements;
}

:: is called as scope resolution operator which is used to define the member
function outside the class.

• Inline expansion may not work if function contains static variables

• Member functions(functions which access the data members)enables
the C++ programmer to prevent pollution of the global namespace
that needs to name clashes

• Inline expansion may not work if function contains static variables

• Member functions(functions which access the data members)enables
the C++ programmer to prevent pollution of the global namespace
that needs to name clashes

• Inline expansion may not work if function contains static variables

• Member functions(functions which access the data members)enables
the C++ programmer to prevent pollution of the global namespace
that needs to name clashes

• Inline expansion may not work if function contains static variables

• Member functions(functions which access the data members)enables
the C++ programmer to prevent pollution of the global namespace
that needs to name clashes

Calculation of area and perimeter of
rectangle(inline function)
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :
void input()
{
cout<<"Enter the values of l and b : "<<endl;
cin>>l>>b;
}

#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :
void input()
{
cout<<"Enter the values of l and b : "<<endl;
cin>>l>>b;
}

Calculation of area and perimeter of
rectangle(inline function)
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :
void input()
{
cout<<"Enter the values of l and b : "<<endl;
cin>>l>>b;
}

#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :
void input()
{
cout<<"Enter the values of l and b : "<<endl;
cin>>l>>b;
}

Calculation of area and perimeter of
rectangle(inline function)

void process()
{

a = l * b;

p = 2 * (l + b);

}

void output()
{

cout<<"Area : "<<a<<endl;

cout<<"Perimeter : "<<p<<endl;

}

};

void process()
{

a = l * b;

p = 2 * (l + b);

}

void output()
{

cout<<"Area : "<<a<<endl;

cout<<"Perimeter : "<<p<<endl;

}

};

Calculation of area and perimeter of
rectangle(inline function)

Calculation of area and perimeter of
rectangle(inline function)
void main()

{
rect r;
clrscr();
r.input();
r.process();
r.output();
getch();
}

void main()
{
rect r;
clrscr();
r.input();
r.process();
r.output();
getch();
}

Calculation of area and perimeter of
rectangle(inline function)

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE(Inline function)
Output :
Enter the values of l and b :

10

20

Area : 200

Perimeter : 60

Output :
Enter the values of l and b :

10

20

Area : 200

Perimeter : 60

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE(Inline function)

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE (outline function)

#include<iostream.h>
#include<conio.h>

class rect
{

private :
float l,b,a,p;

#include<iostream.h>
#include<conio.h>

class rect
{

private :
float l,b,a,p;

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE (outline function)

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE

public :
void input();
void process();
void output();
};

void rect::input()
{
cout<<"Enter the values of l and b :"<<endl;
cin>>l>>b;
}

public :
void input();
void process();
void output();
};

void rect::input()
{
cout<<"Enter the values of l and b :"<<endl;
cin>>l>>b;
}

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE

public :
void input();
void process();
void output();
};

void rect::input()
{
cout<<"Enter the values of l and b :"<<endl;
cin>>l>>b;
}

public :
void input();
void process();
void output();
};

void rect::input()
{
cout<<"Enter the values of l and b :"<<endl;
cin>>l>>b;
}

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE
void rect::process()
{
a = l * b;
p = 2 * (l + b);
}
void rect::output()
{
cout<<"Area : "<<a<<endl;
cout<<"Perimeter : "<<p<<endl;
}

void rect::process()
{
a = l * b;
p = 2 * (l + b);
}
void rect::output()
{
cout<<"Area : "<<a<<endl;
cout<<"Perimeter : "<<p<<endl;
}

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE
void main()

{
rect r;
clrscr();
r.input();
r.process();

r.output();
getch();
}

void main()
{

rect r;
clrscr();
r.input();
r.process();

r.output();
getch();
}

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE

Output :
Enter the value of l and b : 20

30
Area : 600
Perimeter : 100

Output :
Enter the value of l and b : 20

30
Area : 600
Perimeter : 100

CALCULATION OF AREA AND PERIMETER OF
RECTANGLE

Calculation of simple interest using inline
function

#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;
public :
void input()
{
cout<<"Enter the values of p,n,r : "<<endl;

cin>>p>>n>>r;
}

#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;
public :
void input()
{
cout<<"Enter the values of p,n,r : "<<endl;

cin>>p>>n>>r;
}

Calculation of simple interest using inline
function

#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;
public :
void input()
{
cout<<"Enter the values of p,n,r : "<<endl;

cin>>p>>n>>r;
}

#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;
public :
void input()
{
cout<<"Enter the values of p,n,r : "<<endl;

cin>>p>>n>>r;
}

void process()
{

s = (p * n * r)/100;
}

void output()
{
cout<<"Simple Intrest : "<<s<<endl;

}
};

void process()
{

s = (p * n * r)/100;
}

void output()
{
cout<<"Simple Intrest : "<<s<<endl;

}
};

void process()
{

s = (p * n * r)/100;
}

void output()
{
cout<<"Simple Intrest : "<<s<<endl;

}
};

void process()
{

s = (p * n * r)/100;
}

void output()
{
cout<<"Simple Intrest : "<<s<<endl;

}
};

void main()
{
simple s;
clrscr();
s.input();
s.process();
s.output();
getch();

}

void main()
{
simple s;
clrscr();
s.input();
s.process();
s.output();
getch();

}

Calculation of simple interest outline function

#include<iostream.h>
#include<conio.h>
class simple
{
private :

float p,n,r,s;
public :

void input();
void process();
void output();
};

#include<iostream.h>
#include<conio.h>
class simple
{
private :

float p,n,r,s;
public :

void input();
void process();
void output();
};

Calculation of simple interest outline function

Calculation of simple interest outline function

void simple::input()
{
cout<<"Enter the values of p,n and r :"<<endl;
cin>>p>>n>>r;
}
void simple::process()
{
s = (p * n * r)/100;
}

void simple::input()
{
cout<<"Enter the values of p,n and r :"<<endl;
cin>>p>>n>>r;
}
void simple::process()
{
s = (p * n * r)/100;
}

Calculation of simple interest outline function

void simple::input()
{
cout<<"Enter the values of p,n and r :"<<endl;
cin>>p>>n>>r;
}
void simple::process()
{
s = (p * n * r)/100;
}

void simple::input()
{
cout<<"Enter the values of p,n and r :"<<endl;
cin>>p>>n>>r;
}
void simple::process()
{
s = (p * n * r)/100;
}

Calculation of simple interest outline function

void simple::output()
{
cout<<"Simple Interest : "<<s<<endl;
}

void main()
{
simple s;
clrscr();

void simple::output()
{
cout<<"Simple Interest : "<<s<<endl;
}

void main()
{
simple s;
clrscr();

Calculation of simple interest outline function

void simple::output()
{
cout<<"Simple Interest : "<<s<<endl;
}

void main()
{
simple s;
clrscr();

void simple::output()
{
cout<<"Simple Interest : "<<s<<endl;
}

void main()
{
simple s;
clrscr();

Calculation of simple interest outline function

s.input();
s.process();
s.output();
getch();

}

s.input();
s.process();
s.output();
getch();

}

Calculation of simple interest outline function

Calculation of simple interest outline function

• Output :
Enter the values of p,n and r :
4000
3

4.5
Simple Interest : 540.00

• Output :
Enter the values of p,n and r :
4000
3

4.5
Simple Interest : 540.00

Calculation of simple interest outline function

Member function with arguments and no
return value
Function (with arguments)which does not return anything to the called
function is called as function with no return value.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

Function (with arguments)which does not return anything to the called
function is called as function with no return value.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

Member function with arguments and no
return value
Function (with arguments)which does not return anything to the called
function is called as function with no return value.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

Function (with arguments)which does not return anything to the called
function is called as function with no return value.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

void input(float x,float y)
{
l = x;
b = y;
}

void input(float x,float y)
{
l = x;
b = y;
}

Member functions with arguments and no
return value
void show()
{
cout<<"Length : "<<l<<endl;
cout<<"Breadth : "<<b<<endl;
}
void process()
{
a = l * b;
p = 2 * (l + b);
}

void show()
{
cout<<"Length : "<<l<<endl;
cout<<"Breadth : "<<b<<endl;
}
void process()
{
a = l * b;
p = 2 * (l + b);
}

Member functions with arguments and no
return value

Member functions with arguments and no
return value

void output()
{

cout<<"Area : "<<a<<endl;
Cout<<"Perimeter : "<<p<<endl;

}
};
void main()

{
rect r;
clrscr();
r.input(40.5,20.5);
r.show();

void output()
{

cout<<"Area : "<<a<<endl;
Cout<<"Perimeter : "<<p<<endl;

}
};
void main()

{
rect r;
clrscr();
r.input(40.5,20.5);
r.show();

Member functions with arguments and no
return value

Member functions with arguments and no
return value

r.process();
r.output();
getch();

}
Output:
Length : 40
Breadth : 20

Area : 800
Perimeter : 120

r.process();
r.output();
getch();

}
Output:
Length : 40
Breadth : 20

Area : 800
Perimeter : 120

Member functions with arguments and no
return value

Member functions with arguments and no
return value
#include<iostream.h>
#include<conio.h>
class simple

{
private :
float p,n,r,s;
public :

#include<iostream.h>
#include<conio.h>
class simple

{
private :
float p,n,r,s;
public :

Member functions with arguments and no
return value

Member functions with arguments and no
return value
void input(float x,float y,float z)
{

p = x ;
n = y ;
r = z ;
}

void input(float x,float y,float z)
{

p = x ;
n = y ;
r = z ;
}

Member functions with arguments and no
return value
void input(float x,float y,float z)
{

p = x ;
n = y ;
r = z ;
}

void input(float x,float y,float z)
{

p = x ;
n = y ;
r = z ;
}

Member functions with arguments and no
return value
void show()

{
cout<<"p : "<<p<<endl;
cout<<"n : "<<n<<endl;

cout<<"r : "<<r<<endl;
}

void show()
{

cout<<"p : "<<p<<endl;
cout<<"n : "<<n<<endl;

cout<<"r : "<<r<<endl;
}

Member functions with arguments and no
return value

Member functions with arguments and no
return value

void process()
{
s = (p * n * r)/100;

}
void output()

{
cout<<"Simple Interest : "<<s<<endl;

}
};

void process()
{
s = (p * n * r)/100;

}
void output()

{
cout<<"Simple Interest : "<<s<<endl;

}
};

Member functions with arguments and no
return value

void process()
{
s = (p * n * r)/100;

}
void output()

{
cout<<"Simple Interest : "<<s<<endl;

}
};

void process()
{
s = (p * n * r)/100;

}
void output()

{
cout<<"Simple Interest : "<<s<<endl;

}
};

Member functions with arguments and no
return value
void main()

{
simple s;
clrscr();
s.input(4000,3,4.5);
s.show();
s.process();

void main()
{

simple s;
clrscr();
s.input(4000,3,4.5);
s.show();
s.process();

Member functions with arguments and no
return value

Member functions with arguments and no
return value
s.output();
getch();
}
Output:
p : 4000
n : 3
r : 4.5
Simple Interest : 150.00

s.output();
getch();
}
Output:
p : 4000
n : 3
r : 4.5
Simple Interest : 150.00

Member functions with arguments and no
return value

Member function with arguments and return
value

Function which return a value to the calling function is called as member
function with arguments and return value.
#include<iostream.h>
#include<conio.h>
class large
{
private :
int a,b;
public :

Function which return a value to the calling function is called as member
function with arguments and return value.
#include<iostream.h>
#include<conio.h>
class large
{
private :
int a,b;
public :

Member function with arguments and return
value

Function which return a value to the calling function is called as member
function with arguments and return value.
#include<iostream.h>
#include<conio.h>
class large
{
private :
int a,b;
public :

Function which return a value to the calling function is called as member
function with arguments and return value.
#include<iostream.h>
#include<conio.h>
class large
{
private :
int a,b;
public :

void input(int x,int y)
{

a = x;
b = y;

}
void show()

void input(int x,int y)
{

a = x;
b = y;

}
void show()

{
cout<<"a : "<<a<<endl;
cout<<"b : "<<b<<endl;
}
int process()
{
if(a>b)
{
return a;
}

{
cout<<"a : "<<a<<endl;
cout<<"b : "<<b<<endl;
}
int process()
{
if(a>b)
{
return a;
}

else
{

return b;
}
}
};

else
{

return b;
}
}
};

void main()
{
large a;
clrscr();
a.input(2,3);
a.show();
int big = a.process();
cout<<"The Largest : "<<big<<endl;
getch();
}

void main()
{
large a;
clrscr();
a.input(2,3);
a.show();
int big = a.process();
cout<<"The Largest : "<<big<<endl;
getch();
}

a : 2
b : 3

The Largest : 3

a : 2
b : 3

The Largest : 3

constructor

• A constructor is a special member function whose task is to initialize
the object of its class.

• It is special because its name same as the class name .

• Constructor is invoked whenever an object of its associated class is
created.

• It is called constructor because it constructs the values of the data
members of the class.

• A constructor is a special member function whose task is to initialize
the object of its class.

• It is special because its name same as the class name .

• Constructor is invoked whenever an object of its associated class is
created.

• It is called constructor because it constructs the values of the data
members of the class.

• A constructor is a special member function whose task is to initialize
the object of its class.

• It is special because its name same as the class name .

• Constructor is invoked whenever an object of its associated class is
created.

• It is called constructor because it constructs the values of the data
members of the class.

• A constructor is a special member function whose task is to initialize
the object of its class.

• It is special because its name same as the class name .

• Constructor is invoked whenever an object of its associated class is
created.

• It is called constructor because it constructs the values of the data
members of the class.

• Constructor should have some special characteristic:
• They should be declared in the public section
• They are invoked automatically when the objects are created.
• They do not have return types,not even void and therefore,and they

cannot return values.
• They cannot be inherited ,though a derived class can call the base

class constructor.
• Like other c++ functions,they can have default arguments.
• Constructors cannot be virtual.

• Constructor should have some special characteristic:
• They should be declared in the public section
• They are invoked automatically when the objects are created.
• They do not have return types,not even void and therefore,and they

cannot return values.
• They cannot be inherited ,though a derived class can call the base

class constructor.
• Like other c++ functions,they can have default arguments.
• Constructors cannot be virtual.

• Constructor should have some special characteristic:
• They should be declared in the public section
• They are invoked automatically when the objects are created.
• They do not have return types,not even void and therefore,and they

cannot return values.
• They cannot be inherited ,though a derived class can call the base

class constructor.
• Like other c++ functions,they can have default arguments.
• Constructors cannot be virtual.

• Constructor should have some special characteristic:
• They should be declared in the public section
• They are invoked automatically when the objects are created.
• They do not have return types,not even void and therefore,and they

cannot return values.
• They cannot be inherited ,though a derived class can call the base

class constructor.
• Like other c++ functions,they can have default arguments.
• Constructors cannot be virtual.

• We cannot refer to their addresses.
• An object with constructor(or destructor) cannot be used as a

member of union.
• They make implicit calls to the operators new and delete when

memory location is required.
• Remember when constructor is declared for the class,intialisation of

the class objects become madantory.
• An explicit call to the constructor for an existing object is forbidden

• We cannot refer to their addresses.
• An object with constructor(or destructor) cannot be used as a

member of union.
• They make implicit calls to the operators new and delete when

memory location is required.
• Remember when constructor is declared for the class,intialisation of

the class objects become madantory.
• An explicit call to the constructor for an existing object is forbidden

• We cannot refer to their addresses.
• An object with constructor(or destructor) cannot be used as a

member of union.
• They make implicit calls to the operators new and delete when

memory location is required.
• Remember when constructor is declared for the class,intialisation of

the class objects become madantory.
• An explicit call to the constructor for an existing object is forbidden

• We cannot refer to their addresses.
• An object with constructor(or destructor) cannot be used as a

member of union.
• They make implicit calls to the operators new and delete when

memory location is required.
• Remember when constructor is declared for the class,intialisation of

the class objects become madantory.
• An explicit call to the constructor for an existing object is forbidden

TYPES OF CONSTRUCTOR

1.DEFAULT CONSRTUCTOR
2.PARAMETERIZED CONSTRUCTOR
3.OVERLOADED CONSTRUCTOR
4.COPY CONSTRUCTOR

1.DEFAULT CONSRTUCTOR
2.PARAMETERIZED CONSTRUCTOR
3.OVERLOADED CONSTRUCTOR
4.COPY CONSTRUCTOR

TYPES OF CONSTRUCTOR

1.DEFAULT CONSRTUCTOR
2.PARAMETERIZED CONSTRUCTOR
3.OVERLOADED CONSTRUCTOR
4.COPY CONSTRUCTOR

1.DEFAULT CONSRTUCTOR
2.PARAMETERIZED CONSTRUCTOR
3.OVERLOADED CONSTRUCTOR
4.COPY CONSTRUCTOR

Simple Interest using default constructor

Default constructor:Constructor without arguments are called as
default constructor.
#include<iostream.h>
#include<conio.h>
class simple
{

private :
float p,n,r,s;

public :

Default constructor:Constructor without arguments are called as
default constructor.
#include<iostream.h>
#include<conio.h>
class simple
{

private :
float p,n,r,s;

public :

Simple Interest using default constructor

Default constructor:Constructor without arguments are called as
default constructor.
#include<iostream.h>
#include<conio.h>
class simple
{

private :
float p,n,r,s;

public :

Default constructor:Constructor without arguments are called as
default constructor.
#include<iostream.h>
#include<conio.h>
class simple
{

private :
float p,n,r,s;

public :

Simple Interest using default constructor

simple()
{

p = 2000;
n = 3;
r = 2.5;
}

simple()
{

p = 2000;
n = 3;
r = 2.5;
}

Simple Interest using default constructor

Simple Interest using default constructor

void show()
{

cout<<"p : "<<p<<endl;
cout<<"n : "<<n<<endl;
cout<<"r : "<<r<<endl;
}

void show()
{

cout<<"p : "<<p<<endl;
cout<<"n : "<<n<<endl;
cout<<"r : "<<r<<endl;
}

Simple Interest using default constructor

Simple Interest using default constructor

void process()
{

s = (p * n * r)/100;
}

void process()
{

s = (p * n * r)/100;
}

Simple Interest using default constructor

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

Default constructor

void main()
{

simple s;
clrscr();
s.show();
s.process();
s.output();
getch();
}

void main()
{

simple s;
clrscr();
s.show();
s.process();
s.output();
getch();
}

output

• p : 2000
• n : 3
• r : 2.5
• Simple Interest : 150

• p : 2000
• n : 3
• r : 2.5
• Simple Interest : 150

Parameterised constructor

The constructor which take arguments are called as parameterized
constructor.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

The constructor which take arguments are called as parameterized
constructor.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

Parameterised constructor

The constructor which take arguments are called as parameterized
constructor.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

The constructor which take arguments are called as parameterized
constructor.
Program:
#include<iostream.h>
#include<conio.h>
class rect
{
private :
float l,b,a,p;
public :

PARAMETERIZED CONSTRUCTOR

rect(float x,float y)
{
l = x;
b = y;
}

void show()
{
cout<<"Length = "<<l<<endl;
cout<<"Breadth = "<<b<<endl;
}

rect(float x,float y)
{
l = x;
b = y;
}

void show()
{
cout<<"Length = "<<l<<endl;
cout<<"Breadth = "<<b<<endl;
}

PARAMETERIZED CONSTRUCTOR

PARAMETERIZED CONSTRUCTOR

void process()
{
a = l * b;
p = 2 * (l + b);
}

void process()
{
a = l * b;
p = 2 * (l + b);
}

PARAMETERIZED CONSTRUCTOR

PARAMETERIZED CONSTRUCTOR

void output()
{

cout<<"Area = "<<a<<endl;
cout<<"Perimeter = "<<p<<endl;

}
};

void output()
{

cout<<"Area = "<<a<<endl;
cout<<"Perimeter = "<<p<<endl;

}
};

PARAMETERIZED CONSTRUCTOR

PARAMETERIZED CONSTRUCTOR

void main()
{

rect r(20,30);
clrscr();
r.show();
r.process();
r.output();
getch();

}

void main()
{

rect r(20,30);
clrscr();
r.show();
r.process();
r.output();
getch();

}

PARAMETERIZED CONSTRUCTOR

PARAMETERIZED CONSTRUCTOR

Output:
Length = 20
Breadth = 30
Area : 600
Perimeter : 100

Output:
Length = 20
Breadth = 30
Area : 600
Perimeter : 100

PARAMETERIZED CONSTRUCTOR

Overloaded constructor

Process of using 2 different types of constructor in a single program is called as
overloaded constructor.
PROGRAM:
#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;

public :

Process of using 2 different types of constructor in a single program is called as
overloaded constructor.
PROGRAM:
#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;

public :

Overloaded constructor

Process of using 2 different types of constructor in a single program is called as
overloaded constructor.
PROGRAM:
#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;

public :

Process of using 2 different types of constructor in a single program is called as
overloaded constructor.
PROGRAM:
#include<iostream.h>
#include<conio.h>
class simple
{
private :
float p,n,r,s;

public :

Overloaded constructor

simple()
{

p = 2000;
n = 2.5;
r = 3.2;

}

simple()
{

p = 2000;
n = 2.5;
r = 3.2;

}

Overloaded constructor

Overloaded constructor

simple(float x,float y,float z)
{
p = x;
n = y;
r = z;
}

simple(float x,float y,float z)
{
p = x;
n = y;
r = z;
}

Overloaded constructor

Overloaded constructor

void show()
{
cout<<"p : "<<p<<endl;

cout<<"n : "<<n<<endl;
cout<<"r : "<<r<<endl;
}

void show()
{
cout<<"p : "<<p<<endl;

cout<<"n : "<<n<<endl;
cout<<"r : "<<r<<endl;
}

Overloaded constructor

Overloaded constructor

void process()
{
s = (p * n * r)/100;
}

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

void process()
{
s = (p * n * r)/100;
}

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

Overloaded constructor

void process()
{
s = (p * n * r)/100;
}

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

void process()
{
s = (p * n * r)/100;
}

void output()
{

cout<<"Simple Interest : "<<s<<endl;
}
};

Overloaded constructor

void main()
{
simple s,x(3000,2,5);
clrscr();
s.show();
s.process();
s.output();
x.show();
x.process();
x.output();
getch();
}

void main()
{
simple s,x(3000,2,5);
clrscr();
s.show();
s.process();
s.output();
x.show();
x.process();
x.output();
getch();
}

Overloaded constructor

Overloaded constructor

Output:
p : 2000
n : 2.5
r : 3.2
Simple Interest : 160
p : 3000
n : 2

r : 5
Simple Interest : 300

Output:
p : 2000
n : 2.5
r : 3.2
Simple Interest : 160
p : 3000
n : 2

r : 5
Simple Interest : 300

Overloaded constructor

• s X

p=2000
n=2.5
r=3.2

p=2000
n=2.5
r=3.2

• s X

p=2000
n=2.5
r=3.2

X=3000
Y=2
Z=5

P=3000
n=2
r=5

p=2000
n=2.5
r=3.2

X=3000
Y=2
Z=5

P=3000
n=2
r=5

Copy construtor

Copy constructor is used to declare and initialise the object from another
object.
Program:
#include<iostream.h>
#include<conio.h>
class copy
{
private :
int a;
public :

Copy constructor is used to declare and initialise the object from another
object.
Program:
#include<iostream.h>
#include<conio.h>
class copy
{
private :
int a;
public :

Copy constructor is used to declare and initialise the object from another
object.
Program:
#include<iostream.h>
#include<conio.h>
class copy
{
private :
int a;
public :

Copy constructor is used to declare and initialise the object from another
object.
Program:
#include<iostream.h>
#include<conio.h>
class copy
{
private :
int a;
public :

Copy constructor

copy(int x)
{
a = x;
}
void show()
{
cout<<"The value of a : "<<a<<endl;
}
};

copy(int x)
{
a = x;
}
void show()
{
cout<<"The value of a : "<<a<<endl;
}
};

copy(int x)
{
a = x;
}
void show()
{
cout<<"The value of a : "<<a<<endl;
}
};

copy(int x)
{
a = x;
}
void show()
{
cout<<"The value of a : "<<a<<endl;
}
};

Copy constructor

void main()
{

copy c(10);
copy y(c);
clrscr();

c.show();
y.show();
getch();

}

void main()
{

copy c(10);
copy y(c);
clrscr();

c.show();
y.show();
getch();

}

c y

10

c y

10

Copy constructor

• Output:
• The value of a : 10
• The value of a : 10
• NOTE:If the class has pointer variables and has some dynamic

memory allocations,then it is must to have copy constructor

• Output:
• The value of a : 10
• The value of a : 10
• NOTE:If the class has pointer variables and has some dynamic

memory allocations,then it is must to have copy constructor

• Output:
• The value of a : 10
• The value of a : 10
• NOTE:If the class has pointer variables and has some dynamic

memory allocations,then it is must to have copy constructor

• Output:
• The value of a : 10
• The value of a : 10
• NOTE:If the class has pointer variables and has some dynamic

memory allocations,then it is must to have copy constructor

Destuctor

• A destructor,as the name implies,it is used to destroy the objects that have
been created by a constructor.

• Can be used to gurantee a proper clean up when an object goes out of
scope

• Like a constructor ,destructor is a member function whose name is same as
the class name but is preceded by a tilde.

• For example the destuctor for the class integer can be defined as shown
below

• Syntax:
~integer()
{
}

• A destructor,as the name implies,it is used to destroy the objects that have
been created by a constructor.

• Can be used to gurantee a proper clean up when an object goes out of
scope

• Like a constructor ,destructor is a member function whose name is same as
the class name but is preceded by a tilde.

• For example the destuctor for the class integer can be defined as shown
below

• Syntax:
~integer()
{
}

• A destructor,as the name implies,it is used to destroy the objects that have
been created by a constructor.

• Can be used to gurantee a proper clean up when an object goes out of
scope

• Like a constructor ,destructor is a member function whose name is same as
the class name but is preceded by a tilde.

• For example the destuctor for the class integer can be defined as shown
below

• Syntax:
~integer()
{
}

• A destructor,as the name implies,it is used to destroy the objects that have
been created by a constructor.

• Can be used to gurantee a proper clean up when an object goes out of
scope

• Like a constructor ,destructor is a member function whose name is same as
the class name but is preceded by a tilde.

• For example the destuctor for the class integer can be defined as shown
below

• Syntax:
~integer()
{
}

• A destructor never take any arguments nor does it return any value.
• It will be invoked implicitly by the compiler upon the exit from the

program(or block or function as the case may be)to clean up storage
that is no longer accessible.

• It is a good practice to declare destructors in a program since it
releases memory space for future use.

• Whenever new(Memory allocation operator) is used to allocate the
memory in the constructors,we should use delete(memory release
operator) to release that memory

• A destructor never take any arguments nor does it return any value.
• It will be invoked implicitly by the compiler upon the exit from the

program(or block or function as the case may be)to clean up storage
that is no longer accessible.

• It is a good practice to declare destructors in a program since it
releases memory space for future use.

• Whenever new(Memory allocation operator) is used to allocate the
memory in the constructors,we should use delete(memory release
operator) to release that memory

• A destructor never take any arguments nor does it return any value.
• It will be invoked implicitly by the compiler upon the exit from the

program(or block or function as the case may be)to clean up storage
that is no longer accessible.

• It is a good practice to declare destructors in a program since it
releases memory space for future use.

• Whenever new(Memory allocation operator) is used to allocate the
memory in the constructors,we should use delete(memory release
operator) to release that memory

• A destructor never take any arguments nor does it return any value.
• It will be invoked implicitly by the compiler upon the exit from the

program(or block or function as the case may be)to clean up storage
that is no longer accessible.

• It is a good practice to declare destructors in a program since it
releases memory space for future use.

• Whenever new(Memory allocation operator) is used to allocate the
memory in the constructors,we should use delete(memory release
operator) to release that memory

Destructor

#include<iostream.h>
#include<conio.h>
Class test
{
int a,b;
public:
{
test()
{
a=10;
b=20;
}

#include<iostream.h>
#include<conio.h>
Class test
{
int a,b;
public:
{
test()
{
a=10;
b=20;
}

~test()
{

cout<<“a=“<<a<<endl;
cout<<“b=“<<b<<endl;

}
};
Void main()
{
clrscr();

~test()
{

cout<<“a=“<<a<<endl;
cout<<“b=“<<b<<endl;

}
};
Void main()
{
clrscr();

test t;
}

Output:
a=10
b=20

test t;
}

Output:
a=10
b=20

OPERATOR OVERLOADING
(REVISION)

OPERATOR OVERLOADING
(REVISION)

OPERATOR OVERLOADING
(REVISION)

OPERATOR OVERLOADING
(REVISION)

Operator overloading

• OPERATOR OVERLOADING is one of the many exciting features of C++
language.

• It is an important technique that has enhanced the power of extensibility
of C++.

• We have stated more than once that C++ tries to make the user defined
data types behave in much the same way as the built in types.

• For instance ,C ++ permits us to add two variables of user defined types
with the same syntax that is applied to the basic types.

• This means that C++ has the ability to provide the operators with a special
meaning for a data type.

• The mechanism of giving such special meaning to an operator is known as
operator overloading.

• OPERATOR OVERLOADING is one of the many exciting features of C++
language.

• It is an important technique that has enhanced the power of extensibility
of C++.

• We have stated more than once that C++ tries to make the user defined
data types behave in much the same way as the built in types.

• For instance ,C ++ permits us to add two variables of user defined types
with the same syntax that is applied to the basic types.

• This means that C++ has the ability to provide the operators with a special
meaning for a data type.

• The mechanism of giving such special meaning to an operator is known as
operator overloading.

• OPERATOR OVERLOADING is one of the many exciting features of C++
language.

• It is an important technique that has enhanced the power of extensibility
of C++.

• We have stated more than once that C++ tries to make the user defined
data types behave in much the same way as the built in types.

• For instance ,C ++ permits us to add two variables of user defined types
with the same syntax that is applied to the basic types.

• This means that C++ has the ability to provide the operators with a special
meaning for a data type.

• The mechanism of giving such special meaning to an operator is known as
operator overloading.

• OPERATOR OVERLOADING is one of the many exciting features of C++
language.

• It is an important technique that has enhanced the power of extensibility
of C++.

• We have stated more than once that C++ tries to make the user defined
data types behave in much the same way as the built in types.

• For instance ,C ++ permits us to add two variables of user defined types
with the same syntax that is applied to the basic types.

• This means that C++ has the ability to provide the operators with a special
meaning for a data type.

• The mechanism of giving such special meaning to an operator is known as
operator overloading.

• Operator overloading provides a flexible option for the creation of new
definitions for most of the C++ operators.

• We can almost create a new language of our own by the creative use of
function and operator overloading techniques.

• We can overload all the C++ operators except the following
• i)class member access operator
• Ii)scope resolution operator(::)
• Iii)size operator(size off)
• Iv)conditional operator(?:)
• V)typeid(finding the type of the object pointed at)

• Operator overloading provides a flexible option for the creation of new
definitions for most of the C++ operators.

• We can almost create a new language of our own by the creative use of
function and operator overloading techniques.

• We can overload all the C++ operators except the following
• i)class member access operator
• Ii)scope resolution operator(::)
• Iii)size operator(size off)
• Iv)conditional operator(?:)
• V)typeid(finding the type of the object pointed at)

• Operator overloading provides a flexible option for the creation of new
definitions for most of the C++ operators.

• We can almost create a new language of our own by the creative use of
function and operator overloading techniques.

• We can overload all the C++ operators except the following
• i)class member access operator
• Ii)scope resolution operator(::)
• Iii)size operator(size off)
• Iv)conditional operator(?:)
• V)typeid(finding the type of the object pointed at)

• Operator overloading provides a flexible option for the creation of new
definitions for most of the C++ operators.

• We can almost create a new language of our own by the creative use of
function and operator overloading techniques.

• We can overload all the C++ operators except the following
• i)class member access operator
• Ii)scope resolution operator(::)
• Iii)size operator(size off)
• Iv)conditional operator(?:)
• V)typeid(finding the type of the object pointed at)

Defining operator overloading

• To define an additional task to an operator,we must specify what it
means in relation to the class to which the operator is applied.

• This is done with the help of a special function ,called operator
function ,which describes the task.

• The general form of an operator function is :
return type classname ::operator op(arg list)

{
function body

}

• To define an additional task to an operator,we must specify what it
means in relation to the class to which the operator is applied.

• This is done with the help of a special function ,called operator
function ,which describes the task.

• The general form of an operator function is :
return type classname ::operator op(arg list)

{
function body

}

Defining operator overloading

• To define an additional task to an operator,we must specify what it
means in relation to the class to which the operator is applied.

• This is done with the help of a special function ,called operator
function ,which describes the task.

• The general form of an operator function is :
return type classname ::operator op(arg list)

{
function body

}

• To define an additional task to an operator,we must specify what it
means in relation to the class to which the operator is applied.

• This is done with the help of a special function ,called operator
function ,which describes the task.

• The general form of an operator function is :
return type classname ::operator op(arg list)

{
function body

}

• Where return type is the type of value returned by specified
operation and op is the operator being overloaded.

• The op is preceded by the keyword operator.
• Operator op is the function name.
• Operator function must be either member function (non static) or

friend function.
• A basic difference between them is that a real friend function will

have only one arguments for unary operator and two for binary
operator,while member function has no arguments for unary
operator and only one for binary operator.

• Where return type is the type of value returned by specified
operation and op is the operator being overloaded.

• The op is preceded by the keyword operator.
• Operator op is the function name.
• Operator function must be either member function (non static) or

friend function.
• A basic difference between them is that a real friend function will

have only one arguments for unary operator and two for binary
operator,while member function has no arguments for unary
operator and only one for binary operator.

• Where return type is the type of value returned by specified
operation and op is the operator being overloaded.

• The op is preceded by the keyword operator.
• Operator op is the function name.
• Operator function must be either member function (non static) or

friend function.
• A basic difference between them is that a real friend function will

have only one arguments for unary operator and two for binary
operator,while member function has no arguments for unary
operator and only one for binary operator.

• Where return type is the type of value returned by specified
operation and op is the operator being overloaded.

• The op is preceded by the keyword operator.
• Operator op is the function name.
• Operator function must be either member function (non static) or

friend function.
• A basic difference between them is that a real friend function will

have only one arguments for unary operator and two for binary
operator,while member function has no arguments for unary
operator and only one for binary operator.

• This is because the object used to invoke the member function
is passed implicitly and therefore is available for the member
function.

• This is not the case with friend function.
• Arguments may be passed either by value or reference.
• Operator functions are declared in the class using protypes as

follows:

•

• This is because the object used to invoke the member function
is passed implicitly and therefore is available for the member
function.

• This is not the case with friend function.
• Arguments may be passed either by value or reference.
• Operator functions are declared in the class using protypes as

follows:

•

• This is because the object used to invoke the member function
is passed implicitly and therefore is available for the member
function.

• This is not the case with friend function.
• Arguments may be passed either by value or reference.
• Operator functions are declared in the class using protypes as

follows:

•

• This is because the object used to invoke the member function
is passed implicitly and therefore is available for the member
function.

• This is not the case with friend function.
• Arguments may be passed either by value or reference.
• Operator functions are declared in the class using protypes as

follows:

•

• Vector operator+(vector); //vector addition
• Vector operatot-{}; // unary minus
• friend Vector operator+(vector,vector); //vector addition
• friend vector operator-(vector); // unary minus
• Vector operator-(vector &a); // subtraction

• Vector operator+(vector); //vector addition
• Vector operatot-{}; // unary minus
• friend Vector operator+(vector,vector); //vector addition
• friend vector operator-(vector); // unary minus
• Vector operator-(vector &a); // subtraction

• Vector operator+(vector); //vector addition
• Vector operatot-{}; // unary minus
• friend Vector operator+(vector,vector); //vector addition
• friend vector operator-(vector); // unary minus
• Vector operator-(vector &a); // subtraction

• Vector operator+(vector); //vector addition
• Vector operatot-{}; // unary minus
• friend Vector operator+(vector,vector); //vector addition
• friend vector operator-(vector); // unary minus
• Vector operator-(vector &a); // subtraction

• The process of overloading involves the following steps;
1.Create a class that defines the data that is to be used in the

overloading operation.
2.Declare the operator function operator op() in the public part of the

class.
3.Define the operator function to implement the required operations.

• The process of overloading involves the following steps;
1.Create a class that defines the data that is to be used in the

overloading operation.
2.Declare the operator function operator op() in the public part of the

class.
3.Define the operator function to implement the required operations.

• The process of overloading involves the following steps;
1.Create a class that defines the data that is to be used in the

overloading operation.
2.Declare the operator function operator op() in the public part of the

class.
3.Define the operator function to implement the required operations.

• The process of overloading involves the following steps;
1.Create a class that defines the data that is to be used in the

overloading operation.
2.Declare the operator function operator op() in the public part of the

class.
3.Define the operator function to implement the required operations.

Operator overloading

Types of operator overloading:
• Unary operator overloading.
• Binary operator overloading.
• Syntax for Unary operator overloading: (a) returntype operatorsymbol()

(unary operator overloading)
Syntax for Binary operator overloading:(b)returntype operatorsymbol(class
name explicitobjectname)
• The name of the operator overloading functions are composed of the

keyword operator followed by symbol of the operator being overloaded.
• Overloading operator must have atleast one operand that is in built data

type.

Types of operator overloading:
• Unary operator overloading.
• Binary operator overloading.
• Syntax for Unary operator overloading: (a) returntype operatorsymbol()

(unary operator overloading)
Syntax for Binary operator overloading:(b)returntype operatorsymbol(class
name explicitobjectname)
• The name of the operator overloading functions are composed of the

keyword operator followed by symbol of the operator being overloaded.
• Overloading operator must have atleast one operand that is in built data

type.

Types of operator overloading:
• Unary operator overloading.
• Binary operator overloading.
• Syntax for Unary operator overloading: (a) returntype operatorsymbol()

(unary operator overloading)
Syntax for Binary operator overloading:(b)returntype operatorsymbol(class
name explicitobjectname)
• The name of the operator overloading functions are composed of the

keyword operator followed by symbol of the operator being overloaded.
• Overloading operator must have atleast one operand that is in built data

type.

Types of operator overloading:
• Unary operator overloading.
• Binary operator overloading.
• Syntax for Unary operator overloading: (a) returntype operatorsymbol()

(unary operator overloading)
Syntax for Binary operator overloading:(b)returntype operatorsymbol(class
name explicitobjectname)
• The name of the operator overloading functions are composed of the

keyword operator followed by symbol of the operator being overloaded.
• Overloading operator must have atleast one operand that is in built data

type.

• Let us consider the unary minus operator.
• A minus operator when used as unary,takes just one operand.
• We know that this operator changes the sign of an operand when

applied to basic data item.
• We will see here how to overload this operator that it can be applied

to an object in much the same way as is applied to int or float
variables.

• The unary minus when applied to an object should change the sign of
each of its data item.

• Let us consider the unary minus operator.
• A minus operator when used as unary,takes just one operand.
• We know that this operator changes the sign of an operand when

applied to basic data item.
• We will see here how to overload this operator that it can be applied

to an object in much the same way as is applied to int or float
variables.

• The unary minus when applied to an object should change the sign of
each of its data item.

• Let us consider the unary minus operator.
• A minus operator when used as unary,takes just one operand.
• We know that this operator changes the sign of an operand when

applied to basic data item.
• We will see here how to overload this operator that it can be applied

to an object in much the same way as is applied to int or float
variables.

• The unary minus when applied to an object should change the sign of
each of its data item.

• Let us consider the unary minus operator.
• A minus operator when used as unary,takes just one operand.
• We know that this operator changes the sign of an operand when

applied to basic data item.
• We will see here how to overload this operator that it can be applied

to an object in much the same way as is applied to int or float
variables.

• The unary minus when applied to an object should change the sign of
each of its data item.

Unary operator overloading(Overloading of
++ and -- opearator)
• In unary operator overloading,the operator operates on single variable.
• Unary operators,overloaded by means of a member functions,take no

explicit arguments

Program:
#include<iostream.h>

#include<conio.h>
class test
{

• In unary operator overloading,the operator operates on single variable.
• Unary operators,overloaded by means of a member functions,take no

explicit arguments

Program:
#include<iostream.h>

#include<conio.h>
class test
{

Unary operator overloading(Overloading of
++ and -- opearator)
• In unary operator overloading,the operator operates on single variable.
• Unary operators,overloaded by means of a member functions,take no

explicit arguments

Program:
#include<iostream.h>

#include<conio.h>
class test
{

• In unary operator overloading,the operator operates on single variable.
• Unary operators,overloaded by means of a member functions,take no

explicit arguments

Program:
#include<iostream.h>

#include<conio.h>
class test
{

private :
int a;
public :
test()
{
a = 1;
}

private :
int a;
public :
test()
{
a = 1;
}

void operator++()
{

a++;
}

void operator--()
{
a--;
}

void operator++()
{

a++;
}

void operator--()
{
a--;
}

void output()
{
cout<<"a : "<<a<<endl;
}
};

void output()
{
cout<<"a : "<<a<<endl;
}
};

void main()
{
test t;
clrscr();
t++;
t.output();
t--;
t.output();
getch();
}

void main()
{
test t;
clrscr();
t++;
t.output();
t--;
t.output();
getch();
}

Output :
a : 2
a : 1

Output :
a : 2
a : 1

Reversing the value of the variable using
unary operator overloading

#include<iostream.h>
#include<conio.h>
class test
{

private :
int a,b,c;
public :

#include<iostream.h>
#include<conio.h>
class test
{

private :
int a,b,c;
public :

Reversing the value of the variable using
unary operator overloading

test()
{

a = 10;
b = 20;

c= 30;
}

test()
{

a = 10;
b = 20;

c= 30;
}

void show()
{
cout<<"a : "<<a<<endl;
cout<<"b : "<<b<<endl;
cout<<"c : "<<c<<endl;
}

void show()
{
cout<<"a : "<<a<<endl;
cout<<"b : "<<b<<endl;
cout<<"c : "<<c<<endl;
}

void operator-()
{
a = -a;
b = -b;
c = -c;
}

};

void operator-()
{
a = -a;
b = -b;
c = -c;
}

};

void main()
{
test t;
clrscr();

t.show();
-t;
t.show();
getch();
}

void main()
{
test t;
clrscr();

t.show();
-t;
t.show();
getch();
}

Output :
a : 10
b : 20
c : 30

a : -10
b : -20
c : -30

Output :
a : 10
b : 20
c : 30

a : -10
b : -20
c : -30

Unary opearator overloading(Reversing the
value of variable)

#include<iostream.h>
#include<conio.h>
class reverse

{
private:
int a,b,c;
public:

#include<iostream.h>
#include<conio.h>
class reverse

{
private:
int a,b,c;
public:

Unary opearator overloading(Reversing the
value of variable)

void input(int x,int y,int z)
{
a=x;
b=y;
c=z;

}

void input(int x,int y,int z)
{
a=x;
b=y;
c=z;

}

void show()
{

cout<<“ a= “<<a<<endl;
cout<<“b=“<<b<<endl;
cout<<“c=“<<c<<endl;

}

void show()
{

cout<<“ a= “<<a<<endl;
cout<<“b=“<<b<<endl;
cout<<“c=“<<c<<endl;

}

void operator-()
{

a=-a;
b=-b;
c=-c;

}
};

void operator-()
{

a=-a;
b=-b;
c=-c;

}
};

void main()
{
reverse r;
clrscr();
r.input(10,20,30);
r.show();
-r;
r.show();

}

void main()
{
reverse r;
clrscr();
r.input(10,20,30);
r.show();
-r;
r.show();

}

Unary opearator overloading(Reversing the
value of variable)

#include<iostream.h>
#include<conio.h>
class reverse

{
private:
int a,b,c;
public:

#include<iostream.h>
#include<conio.h>
class reverse

{
private:
int a,b,c;
public:

Unary opearator overloading(Reversing the
value of variable)

void input(int x,int y,int z);
void show();
void operator-();
} ;

void reverse::input(int x,int y,int z)
{

a=x;
b=y;
c=z;

}

void input(int x,int y,int z);
void show();
void operator-();
} ;

void reverse::input(int x,int y,int z)
{

a=x;
b=y;
c=z;

}

void reverse::show()
{

cout<<“ a= “<<a<<endl;
cout<<“b=“<<b<<endl;
cout<<“c=“<<c<<endl;

}

void reverse::show()
{

cout<<“ a= “<<a<<endl;
cout<<“b=“<<b<<endl;
cout<<“c=“<<c<<endl;

}

void reverse::operator-()
{

a=-a;
b=-b;
c=-c;
}

void reverse::operator-()
{

a=-a;
b=-b;
c=-c;
}

void main()
{
reverse r;
clrscr();
r.input(10,20,30);
r.show();
-r;

r.show();
}

void main()
{
reverse r;
clrscr();
r.input(10,20,30);
r.show();
-r;

r.show();
}

Binary operator overloading

• A binary overloading member method takes one arguments.
• Overloading of comparision operator

#include<iostream.h>
#include<conio.h>
class test
{
private :
int a;

• A binary overloading member method takes one arguments.
• Overloading of comparision operator

#include<iostream.h>
#include<conio.h>
class test
{
private :
int a;

Binary operator overloading

• A binary overloading member method takes one arguments.
• Overloading of comparision operator

#include<iostream.h>
#include<conio.h>
class test
{
private :
int a;

• A binary overloading member method takes one arguments.
• Overloading of comparision operator

#include<iostream.h>
#include<conio.h>
class test
{
private :
int a;

public :
void input()
{
cin>>a;
}
void operator==(test t2)
{
if(a==t2.a)
{
cout<<"Objects are equal"<<endl;
}

public :
void input()
{
cin>>a;
}
void operator==(test t2)
{
if(a==t2.a)
{
cout<<"Objects are equal"<<endl;
}

else
{
cout<<"Objects are not equal"<<endl;
}

}
};

else
{
cout<<"Objects are not equal"<<endl;
}

}
};

else
{
cout<<"Objects are not equal"<<endl;
}

}
};

else
{
cout<<"Objects are not equal"<<endl;
}

}
};

void main()
{

test t1,t2;
clrscr();

cout<<"Enter t1 object value : "<<endl;

void main()
{

test t1,t2;
clrscr();

cout<<"Enter t1 object value : "<<endl;

void main()
{

test t1,t2;
clrscr();

cout<<"Enter t1 object value : "<<endl;

void main()
{

test t1,t2;
clrscr();

cout<<"Enter t1 object value : "<<endl;

t1.input();
cout<<"Enter t2 object value : "<<endl;
t2.input();
t1==t2;
getch();
}

t1.input();
cout<<"Enter t2 object value : "<<endl;
t2.input();
t1==t2;
getch();
}

t1.input();
cout<<"Enter t2 object value : "<<endl;
t2.input();
t1==t2;
getch();
}

t1.input();
cout<<"Enter t2 object value : "<<endl;
t2.input();
t1==t2;
getch();
}

Output :
Enter the t1 object value :
2
Enter the t2 object value :

4
Objects are not equal

Output :
Enter the t1 object value :
2
Enter the t2 object value :

4
Objects are not equal

String Concatenation using operator
overloading

#include<iostream.h>
#include<conio.h>
#include<string.h>
class test
{
private :
char st[50];

#include<iostream.h>
#include<conio.h>
#include<string.h>
class test
{
private :
char st[50];

String Concatenation using operator
overloading

public :
void input()
{

cout<<"Enter the string : "<<endl;
cin>>st;
}

public :
void input()
{

cout<<"Enter the string : "<<endl;
cin>>st;
}

public :
void input()
{

cout<<"Enter the string : "<<endl;
cin>>st;
}

public :
void input()
{

cout<<"Enter the string : "<<endl;
cin>>st;
}

void output()
{
cout<<"String : "<<st<<endl;
}
test operator+(test t2)
{
test t3;
strcpy(t3.st,st);
strcat(t3.st," ");
strcat(t3.st,t2.st);
return t3;

void output()
{
cout<<"String : "<<st<<endl;
}
test operator+(test t2)
{
test t3;
strcpy(t3.st,st);
strcat(t3.st," ");
strcat(t3.st,t2.st);
return t3;

}
};
void main()
{

test t1,t2,t3;
clrscr();
t1.input();
t2.input();
t3 = t1+t2;
t3.output();

getch();
}

}
};
void main()
{

test t1,t2,t3;
clrscr();
t1.input();
t2.input();
t3 = t1+t2;
t3.output();

getch();
}

• Output :
Enter the string :
Ram

Enter the string :
kumar
String : Ram Kumar

• Output :
Enter the string :
Ram

Enter the string :
kumar
String : Ram Kumar

Arrays

• Arrays is a collection of similar elements.
• An arrays is also known as subscripted variable.
• Before using arrays its type and dimension must be declared.
• All the elements of 2D Or 3D array are internally accessed using

pointers.
• Arrays can be manipulated by all member function of the class

• Arrays is a collection of similar elements.
• An arrays is also known as subscripted variable.
• Before using arrays its type and dimension must be declared.
• All the elements of 2D Or 3D array are internally accessed using

pointers.
• Arrays can be manipulated by all member function of the class

• Arrays is a collection of similar elements.
• An arrays is also known as subscripted variable.
• Before using arrays its type and dimension must be declared.
• All the elements of 2D Or 3D array are internally accessed using

pointers.
• Arrays can be manipulated by all member function of the class

• Arrays is a collection of similar elements.
• An arrays is also known as subscripted variable.
• Before using arrays its type and dimension must be declared.
• All the elements of 2D Or 3D array are internally accessed using

pointers.
• Arrays can be manipulated by all member function of the class

Program to illustrate the concept of Array

#include<iostream.h>
#include<conio.h>
#include<string.h>
class student
{
private :
char name[20];
int rollno,marks[6],i;
public :
void input();

#include<iostream.h>
#include<conio.h>
#include<string.h>
class student
{
private :
char name[20];
int rollno,marks[6],i;
public :
void input();

Program to illustrate the concept of Array

void output();
};
void student::input()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
cout<<"Enter six subjects marks : "<<endl;
for(i=0;i<6;i++)
{
cin>>marks[i];

void output();
};
void student::input()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
cout<<"Enter six subjects marks : "<<endl;
for(i=0;i<6;i++)
{
cin>>marks[i];

void output();
};
void student::input()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
cout<<"Enter six subjects marks : "<<endl;
for(i=0;i<6;i++)
{
cin>>marks[i];

void output();
};
void student::input()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
cout<<"Enter six subjects marks : "<<endl;
for(i=0;i<6;i++)
{
cin>>marks[i];

}
}
void student::output()
{
cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
int total=0;
float avg;
for(i=0;i<6;i++)
{

}
}
void student::output()
{
cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
int total=0;
float avg;
for(i=0;i<6;i++)
{

total = total + marks[i];
}

avg = total/6;
cout<<"Total : "<<total<<endl;
cout<<"Average : "<<avg<<endl;
cout<<"Result : ";
for(i=0;i<6;i++)
{

if(marks[i]<50)
{
cout<<"Fail";
goto last;

total = total + marks[i];
}

avg = total/6;
cout<<"Total : "<<total<<endl;
cout<<"Average : "<<avg<<endl;
cout<<"Result : ";
for(i=0;i<6;i++)
{

if(marks[i]<50)
{
cout<<"Fail";
goto last;

}
}

cout<<"Pass";
last :

getch();
}

void main()
{

student s;
clrscr();
s.input();
s.output();
getch();

}

}
}

cout<<"Pass";
last :

getch();
}

void main()
{

student s;
clrscr();
s.input();
s.output();
getch();

}

• Output :
Enter the name and rollno :
John
223
Enter six subjects marks :
98
97
96
90
98
97

• Output :
Enter the name and rollno :
John
223
Enter six subjects marks :
98
97
96
90
98
97

Name : John
Rollno : 223
Total : 576
Average : 96
Result : Pass

Name : John
Rollno : 223
Total : 576
Average : 96
Result : Pass

UNIT-4UNIT-4UNIT-4UNIT-4

Inheritance:

• Mechanism fo deriving a new class from the old class is called as
inheritance.

• The old class is called as base class and the new class is called as derived
class or subclass.

• A derived class can inherit some or all the traits from the base class.
• Types of inheritance:
• A)Single level inheritance.
• B)Multiple inheritance.
• C)Multilevel inheritance.
• D)Hierchial inheritance.
• E)Hybrid inheritance.

• Mechanism fo deriving a new class from the old class is called as
inheritance.

• The old class is called as base class and the new class is called as derived
class or subclass.

• A derived class can inherit some or all the traits from the base class.
• Types of inheritance:
• A)Single level inheritance.
• B)Multiple inheritance.
• C)Multilevel inheritance.
• D)Hierchial inheritance.
• E)Hybrid inheritance.

• Mechanism fo deriving a new class from the old class is called as
inheritance.

• The old class is called as base class and the new class is called as derived
class or subclass.

• A derived class can inherit some or all the traits from the base class.
• Types of inheritance:
• A)Single level inheritance.
• B)Multiple inheritance.
• C)Multilevel inheritance.
• D)Hierchial inheritance.
• E)Hybrid inheritance.

• Mechanism fo deriving a new class from the old class is called as
inheritance.

• The old class is called as base class and the new class is called as derived
class or subclass.

• A derived class can inherit some or all the traits from the base class.
• Types of inheritance:
• A)Single level inheritance.
• B)Multiple inheritance.
• C)Multilevel inheritance.
• D)Hierchial inheritance.
• E)Hybrid inheritance.

Single inheritance
• Process of deriving a new class with only one base class is called as single inheritance.

• Derived class with only one base class is called single inheritance.

• BASE CLASS

• DERIVED CLASS

• SYNTAX FOR DERIVED CLASS :class derived classname:visibility mode baseclass name

• Process of deriving a new class with only one base class is called as single inheritance.

• Derived class with only one base class is called single inheritance.

• BASE CLASS

• DERIVED CLASS

• SYNTAX FOR DERIVED CLASS :class derived classname:visibility mode baseclass name

• Process of deriving a new class with only one base class is called as single inheritance.

• Derived class with only one base class is called single inheritance.

• BASE CLASS

• DERIVED CLASS

• SYNTAX FOR DERIVED CLASS :class derived classname:visibility mode baseclass name

• Process of deriving a new class with only one base class is called as single inheritance.

• Derived class with only one base class is called single inheritance.

• BASE CLASS

• DERIVED CLASS

• SYNTAX FOR DERIVED CLASS :class derived classname:visibility mode baseclass name

Single inheritance

#include<iostream.h>

#include<conio.h>

#include<string.h>

#include<iostream.h>

#include<conio.h>

#include<string.h>

Single inheritance

class student
{
private :
char name[20];
int rollno;

class student
{
private :
char name[20];
int rollno;

Single inheriatance

public :
void input1()
{

cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;

}

public :
void input1()
{

cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;

}

public :
void input1()
{

cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;

}

public :
void input1()
{

cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;

}

Single inheritance

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

Single inheritance

class physical:public student
{
private :
float h,w;
public :
void input2()
{
cout<<"Enter the height and weight : "<<endl;
cin>>h>>w;
}

class physical:public student
{
private :
float h,w;
public :
void input2()
{
cout<<"Enter the height and weight : "<<endl;
cin>>h>>w;
}

class physical:public student
{
private :
float h,w;
public :
void input2()
{
cout<<"Enter the height and weight : "<<endl;
cin>>h>>w;
}

class physical:public student
{
private :
float h,w;
public :
void input2()
{
cout<<"Enter the height and weight : "<<endl;
cin>>h>>w;
}

Single inheritance

void output2()
{
cout<<"Height : "<<h<<endl;
cout<<"Weight : "<<w<<endl;
}
};

void output2()
{
cout<<"Height : "<<h<<endl;
cout<<"Weight : "<<w<<endl;
}
};

Single inheritance

void main()
{
physical s;
clrscr();
s.input1();
s.input2();
s.output1();
s.output2();
getch();
}

void main()
{
physical s;
clrscr();
s.input1();
s.input2();
s.output1();
s.output2();
getch();
}

Single inheritance

• Output:
Enter the name and rollno :
John
223

Enter the height and weight :
186
75

Name : John
Rollno : 223

• Output:
Enter the name and rollno :
John
223

Enter the height and weight :
186
75

Name : John
Rollno : 223

Single inheritance

• Height : 186
• Weight : 75
• Height : 186
• Weight : 75

Multilevel inheritance

• The mechanism of deriving a class from another derived class is called as
multilevel inheritance.

• In multilevel inheritance constructors are executed in the order of
inheritance.

A

B

C

• The mechanism of deriving a class from another derived class is called as
multilevel inheritance.

• In multilevel inheritance constructors are executed in the order of
inheritance.

A

B

C

Multilevel inheritance

• The mechanism of deriving a class from another derived class is called as
multilevel inheritance.

• In multilevel inheritance constructors are executed in the order of
inheritance.

A

B

C

• The mechanism of deriving a class from another derived class is called as
multilevel inheritance.

• In multilevel inheritance constructors are executed in the order of
inheritance.

A

B

C

MULTIVEL INHERITANCE

#include<iostream.h>
#include<conio.h>
#include<string.h>
class student
{

private :
char name[20];
int rollno;

#include<iostream.h>
#include<conio.h>
#include<string.h>
class student
{

private :
char name[20];
int rollno;

MULTIVEL INHERITANCE

public :
void input1()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
}

public :
void input1()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
}

public :
void input1()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
}

public :
void input1()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
}

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

void output1()
{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endl;
}
};

class marks:public student
{

protected :
int m1,m2,m3,m4,m5,m6;
public :
void input2()
{

cout<<"Enter the marks : "<<endl;

class marks:public student
{

protected :
int m1,m2,m3,m4,m5,m6;
public :
void input2()
{

cout<<"Enter the marks : "<<endl;

class marks:public student
{

protected :
int m1,m2,m3,m4,m5,m6;
public :
void input2()
{

cout<<"Enter the marks : "<<endl;

class marks:public student
{

protected :
int m1,m2,m3,m4,m5,m6;
public :
void input2()
{

cout<<"Enter the marks : "<<endl;

cin>>m1>>m2>>m3>>m4>>m5>>m6;
}

void output2()
{

cout<<"MATHS : "<<m1<<endl;
cout<<"EDC : "<<m2<<endl;
cout<<"DSD : "<<m3<<endl;
cout<<"SS : "<<m4<<endl;

cout<<"NT : "<<m5<<endl;
cout<<"OOPS : "<<m6<<endl;
}
};

cin>>m1>>m2>>m3>>m4>>m5>>m6;
}

void output2()
{

cout<<"MATHS : "<<m1<<endl;
cout<<"EDC : "<<m2<<endl;
cout<<"DSD : "<<m3<<endl;
cout<<"SS : "<<m4<<endl;

cout<<"NT : "<<m5<<endl;
cout<<"OOPS : "<<m6<<endl;
}
};

class result:public marks
{
private :
int total;
float average;
public :
void output3()
{
total = m1+m2+m3+m4+m5+m6;
average = total/6;

class result:public marks
{
private :
int total;
float average;
public :
void output3()
{
total = m1+m2+m3+m4+m5+m6;
average = total/6;

cout<<"Total : "<<total<<endl;
cout<<"Average : "<<average<<endl;
}
};
void main()
{
result r;
clrscr();
r.input1();
r.input2();

cout<<"Total : "<<total<<endl;
cout<<"Average : "<<average<<endl;
}
};
void main()
{
result r;
clrscr();
r.input1();
r.input2();

cout<<"Total : "<<total<<endl;
cout<<"Average : "<<average<<endl;
}
};
void main()
{
result r;
clrscr();
r.input1();
r.input2();

cout<<"Total : "<<total<<endl;
cout<<"Average : "<<average<<endl;
}
};
void main()
{
result r;
clrscr();
r.input1();
r.input2();

r.output1();
r.output2();
r.output3();
getch();
}

r.output1();
r.output2();
r.output3();
getch();
}

Output :
Enter the name and rollno :
John
223
Enter the marks :
95
92
94
96
97
99

Output :
Enter the name and rollno :
John
223
Enter the marks :
95
92
94
96
97
99

Name : John
Rollno : 223
Maths : 95
EDC : 92
DSD : 94
SS : 96
NT : 97
OOPS : 99
Total = 573
Average = 95

Name : John
Rollno : 223
Maths : 95
EDC : 92
DSD : 94
SS : 96
NT : 97
OOPS : 99
Total = 573
Average = 95

Multiple Inheritance

• The process of deriving a new class (derived class)from more than
one base class is called as Multiple inheritance.

• base class(A) base class(B)

• Derived class

• The process of deriving a new class (derived class)from more than
one base class is called as Multiple inheritance.

• base class(A) base class(B)

• Derived class

• The process of deriving a new class (derived class)from more than
one base class is called as Multiple inheritance.

• base class(A) base class(B)

• Derived class

• The process of deriving a new class (derived class)from more than
one base class is called as Multiple inheritance.

• base class(A) base class(B)

• Derived class

Multiple Inheritance

#include<iostream.h>
#include<conio.h>
#include<string.h>
class student

{
private :

char name[20];
int rollno;
public :

#include<iostream.h>
#include<conio.h>
#include<string.h>
class student

{
private :

char name[20];
int rollno;
public :

Multiple Inheritance

class result:public marks,public student
{
private :

int total;
float average;
public :

void output3()
{
total = m1+m2+m3+m4+m5+m6;

class result:public marks,public student
{
private :

int total;
float average;
public :

void output3()
{
total = m1+m2+m3+m4+m5+m6;

class result:public marks,public student
{
private :

int total;
float average;
public :

void output3()
{
total = m1+m2+m3+m4+m5+m6;

class result:public marks,public student
{
private :

int total;
float average;
public :

void output3()
{
total = m1+m2+m3+m4+m5+m6;

Multiple Inheritance

average = total/6;
cout<<"Total = "<<total<<endl;
cout<<"Average = "<<average<<endl;
}
};

average = total/6;
cout<<"Total = "<<total<<endl;
cout<<"Average = "<<average<<endl;
}
};

average = total/6;
cout<<"Total = "<<total<<endl;
cout<<"Average = "<<average<<endl;
}
};

average = total/6;
cout<<"Total = "<<total<<endl;
cout<<"Average = "<<average<<endl;
}
};

Multiple Inheritance

void main()
{

result r;
clrscr();
r.input1();
r.input2();
r.output1();
r.output2();
r.output3();
getch();
}

void main()
{

result r;
clrscr();
r.input1();
r.input2();
r.output1();
r.output2();
r.output3();
getch();
}

Output:

Enter the name and rollno :
John
223
Enter the marks :
95
92
94
96
97
99

Enter the name and rollno :
John
223
Enter the marks :
95
92
94
96
97
99

Output:

Name : John
Rollno : 223
Maths : 95
EDC : 92
DSD : 94
SS : 96
NT : 97
OOPS : 99
Total = 573
Average = 95

Name : John
Rollno : 223
Maths : 95
EDC : 92
DSD : 94
SS : 96
NT : 97
OOPS : 99
Total = 573
Average = 95

Hierarchial Inheritance

Definition:In hierchial inheritance,a single class serve as a base class for more
than one derived class.
Program:
#include<iostream.h>
#include<conio.h>
#include<string.h>
class account
{
private :
char name[20];

Definition:In hierchial inheritance,a single class serve as a base class for more
than one derived class.
Program:
#include<iostream.h>
#include<conio.h>
#include<string.h>
class account
{
private :
char name[20];

Hierarchial Inheritance

Definition:In hierchial inheritance,a single class serve as a base class for more
than one derived class.
Program:
#include<iostream.h>
#include<conio.h>
#include<string.h>
class account
{
private :
char name[20];

Definition:In hierchial inheritance,a single class serve as a base class for more
than one derived class.
Program:
#include<iostream.h>
#include<conio.h>
#include<string.h>
class account
{
private :
char name[20];

long int accountno;
public :
void input1()
{
cout<<"Enter the name and account no : "<<endl;
cin>>name>>accountno;
}

void output1()
{
cout<<"Account holder Name : "<<name<<endl;
cout<<"Account Number : "<<accountno<<endl;
}
};

long int accountno;
public :
void input1()
{
cout<<"Enter the name and account no : "<<endl;
cin>>name>>accountno;
}

void output1()
{
cout<<"Account holder Name : "<<name<<endl;
cout<<"Account Number : "<<accountno<<endl;
}
};

class savings:public account
{

private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

class savings:public account
{

private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

class savings:public account
{

private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

class savings:public account
{

private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

}
void output2()
{
if(bal<500)
{
cout<<"Minimum Balance should be 500"<<endl;
}

else
{
cout<<"Your account is a Savings account"<<endl;
}
}
};

}
void output2()
{
if(bal<500)
{
cout<<"Minimum Balance should be 500"<<endl;
}

else
{
cout<<"Your account is a Savings account"<<endl;
}
}
};

class current:public account
{
private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

class current:public account
{
private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

class current:public account
{
private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

class current:public account
{
private :
int bal;
public :
void input2()
{

cout<<"Enter the balance : "<<endl;
cin>>bal;

}
void output2()
{
if(bal<1000)
{
cout<<"Minimum balnace should be 1000"<<endl;
}
else
{
cout<<"Your account is a Current account"<<endl;

}
void output2()
{
if(bal<1000)
{
cout<<"Minimum balnace should be 1000"<<endl;
}
else
{
cout<<"Your account is a Current account"<<endl;

}
void output2()
{
if(bal<1000)
{
cout<<"Minimum balnace should be 1000"<<endl;
}
else
{
cout<<"Your account is a Current account"<<endl;

}
void output2()
{
if(bal<1000)
{
cout<<"Minimum balnace should be 1000"<<endl;
}
else
{
cout<<"Your account is a Current account"<<endl;

}
}
};

void main()
{
int op;

clrscr();
cout<<"1.Savings Account"<<endl;
cout<<"2.Current Account"<<endl;
cout<<"Choose the option"<<endl;
cin>>op;
if(op==1)

}
}
};

void main()
{
int op;

clrscr();
cout<<"1.Savings Account"<<endl;
cout<<"2.Current Account"<<endl;
cout<<"Choose the option"<<endl;
cin>>op;
if(op==1)

{
savings s;
s.input1();
s.input2();
s.output1();
s.output2();
}
else if(op==2)
{
current c;
c.input1();
c.input2();
c.output1();
c.output2();

{
savings s;
s.input1();
s.input2();
s.output1();
s.output2();
}
else if(op==2)
{
current c;
c.input1();
c.input2();
c.output1();
c.output2();

}
else
{
cout<<"Invalid Option"<<endl;
}
getch();
}

}
else
{
cout<<"Invalid Option"<<endl;
}
getch();
}

Output :
1.Savings Account
2.Current Account
Choose the option
2

Enter the name and account no :
John

123456789
Enter the balance :
6000
Account holder Name : John
Account Number : 123456789
Your account is Current account

Output :
1.Savings Account
2.Current Account
Choose the option
2

Enter the name and account no :
John

123456789
Enter the balance :
6000
Account holder Name : John
Account Number : 123456789
Your account is Current account

NEW OPERATOR(Memory allocation operator)

• The new operator can be used to create the objects of any type.This is
done as follows:

• Pointer-variable =new datatype(value);
• Here,pointer variable is a pointer of type data type.
• The new operator allocates sufficient memory to hold a data object of

the type data type and returns the address of the object.
• The data type may be any valid data type.
• Pointer variable holds the address of the memory space allocated.
• We can also initialize the memory using the new operator.

• The new operator can be used to create the objects of any type.This is
done as follows:

• Pointer-variable =new datatype(value);
• Here,pointer variable is a pointer of type data type.
• The new operator allocates sufficient memory to hold a data object of

the type data type and returns the address of the object.
• The data type may be any valid data type.
• Pointer variable holds the address of the memory space allocated.
• We can also initialize the memory using the new operator.

NEW OPERATOR(Memory allocation operator)

• The new operator can be used to create the objects of any type.This is
done as follows:

• Pointer-variable =new datatype(value);
• Here,pointer variable is a pointer of type data type.
• The new operator allocates sufficient memory to hold a data object of

the type data type and returns the address of the object.
• The data type may be any valid data type.
• Pointer variable holds the address of the memory space allocated.
• We can also initialize the memory using the new operator.

• The new operator can be used to create the objects of any type.This is
done as follows:

• Pointer-variable =new datatype(value);
• Here,pointer variable is a pointer of type data type.
• The new operator allocates sufficient memory to hold a data object of

the type data type and returns the address of the object.
• The data type may be any valid data type.
• Pointer variable holds the address of the memory space allocated.
• We can also initialize the memory using the new operator.

• New operator offers the following advantage:
• It automatically computes the size of the data object.we need not use

the operator sizeof.
• It automatically returns the correct pointer type,so that there is no

need to use type cast
• It is possible to initialize the object while creating the memory space.
• Like any other operator,new and delete can be overloaded.

• New operator offers the following advantage:
• It automatically computes the size of the data object.we need not use

the operator sizeof.
• It automatically returns the correct pointer type,so that there is no

need to use type cast
• It is possible to initialize the object while creating the memory space.
• Like any other operator,new and delete can be overloaded.

• New operator offers the following advantage:
• It automatically computes the size of the data object.we need not use

the operator sizeof.
• It automatically returns the correct pointer type,so that there is no

need to use type cast
• It is possible to initialize the object while creating the memory space.
• Like any other operator,new and delete can be overloaded.

• New operator offers the following advantage:
• It automatically computes the size of the data object.we need not use

the operator sizeof.
• It automatically returns the correct pointer type,so that there is no

need to use type cast
• It is possible to initialize the object while creating the memory space.
• Like any other operator,new and delete can be overloaded.

New operator(program-1)
#include<iostream.h>
#include<conio.h>
void main()
{

int *p;
p=new int;
*p=10;
clrscr();
cout<<"Answer = "<<*p<<endl;
getch();
}
Output :
Answer = 10

#include<iostream.h>
#include<conio.h>
void main()
{

int *p;
p=new int;
*p=10;
clrscr();
cout<<"Answer = "<<*p<<endl;
getch();
}
Output :
Answer = 10

New operator(program-1)

• When the data object is no long needed,it is destroyed to release the
memory space for reuse.

• Program to illustrate the concept of New operator
#include<iostream.h>
#include<conio.h>
void main()
{

int *p;
p=new int;

• When the data object is no long needed,it is destroyed to release the
memory space for reuse.

• Program to illustrate the concept of New operator
#include<iostream.h>
#include<conio.h>
void main()
{

int *p;
p=new int;

• When the data object is no long needed,it is destroyed to release the
memory space for reuse.

• Program to illustrate the concept of New operator
#include<iostream.h>
#include<conio.h>
void main()
{

int *p;
p=new int;

• When the data object is no long needed,it is destroyed to release the
memory space for reuse.

• Program to illustrate the concept of New operator
#include<iostream.h>
#include<conio.h>
void main()
{

int *p;
p=new int;

*p=10;
clrscr();

cout<<"Answer = "<<*p<<endl;
getch();
}

Output :
Answer = 10

*p=10;
clrscr();

cout<<"Answer = "<<*p<<endl;
getch();
}

Output :
Answer = 10

Program-2

#include<iostream.h>
#include<conio.h>
void main()
{
int *p;
p=new int[5];
p[0]=10;
p[1]=20;
p[2]=30;
p[3]=40;
p[4]=50;

#include<iostream.h>
#include<conio.h>
void main()
{
int *p;
p=new int[5];
p[0]=10;
p[1]=20;
p[2]=30;
p[3]=40;
p[4]=50;

clrscr();
cout<<" "<<p[0]<<endl;
cout<<" "<<p[1]<<endl;
cout<<" "<<p[2]<<endl;

cout<<" "<<p[3]<<endl;
cout<<" "<<p[4]<<endl;
getch();
}

clrscr();
cout<<" "<<p[0]<<endl;
cout<<" "<<p[1]<<endl;
cout<<" "<<p[2]<<endl;

cout<<" "<<p[3]<<endl;
cout<<" "<<p[4]<<endl;
getch();
}

Output :
10
20
30
40
50

Output :
10
20
30
40
50

Program-3

#include<iostream.h>
#include<conio.h>
void main()
{
int *p;
int i;
p=new int[5];

p[0]=10;
p[1]=20;

#include<iostream.h>
#include<conio.h>
void main()
{
int *p;
int i;
p=new int[5];

p[0]=10;
p[1]=20;

p[2]=30;
p[3]=40;
p[4]=50;
clrscr();

p[2]=30;
p[3]=40;
p[4]=50;
clrscr();

for(i=0;i<5;i++)
{
cout<<" "<<p[i]<<endl;
}

getch();
}

Output :
10
20
30
40

for(i=0;i<5;i++)
{
cout<<" "<<p[i]<<endl;
}

getch();
}

Output :
10
20
30
40

Delete operator(Memory release opearator)

• When a data object is no longer needed ,it is destroyed to release the
memory space for reuse.The general form of its use is:
delete pointer-variables;

• The pointer variable is the pointer that points to a data object created with
new.

• delete p;
• delete q;
• If we want to free a dynamically allocated array,we must use the following

form of delete:
delete[size] pointer variable;

• The size specifies the number of elements in the array to be freed.

• When a data object is no longer needed ,it is destroyed to release the
memory space for reuse.The general form of its use is:
delete pointer-variables;

• The pointer variable is the pointer that points to a data object created with
new.

• delete p;
• delete q;
• If we want to free a dynamically allocated array,we must use the following

form of delete:
delete[size] pointer variable;

• The size specifies the number of elements in the array to be freed.

Delete operator(Memory release opearator)

• When a data object is no longer needed ,it is destroyed to release the
memory space for reuse.The general form of its use is:
delete pointer-variables;

• The pointer variable is the pointer that points to a data object created with
new.

• delete p;
• delete q;
• If we want to free a dynamically allocated array,we must use the following

form of delete:
delete[size] pointer variable;

• The size specifies the number of elements in the array to be freed.

• When a data object is no longer needed ,it is destroyed to release the
memory space for reuse.The general form of its use is:
delete pointer-variables;

• The pointer variable is the pointer that points to a data object created with
new.

• delete p;
• delete q;
• If we want to free a dynamically allocated array,we must use the following

form of delete:
delete[size] pointer variable;

• The size specifies the number of elements in the array to be freed.

Program:

#include<iostream.h>
#include<conio.h>

void main()
{
int *p;

p=new int;
*p=10;
cout<<"Answer = "<<*p<<endl;
delete p;
cout<<"The answer after delete = "<<p<<endl;
getch();

}

#include<iostream.h>
#include<conio.h>

void main()
{
int *p;

p=new int;
*p=10;
cout<<"Answer = "<<*p<<endl;
delete p;
cout<<"The answer after delete = "<<p<<endl;
getch();

}

#include<iostream.h>
#include<conio.h>

void main()
{
int *p;

p=new int;
*p=10;
cout<<"Answer = "<<*p<<endl;
delete p;
cout<<"The answer after delete = "<<p<<endl;
getch();

}

#include<iostream.h>
#include<conio.h>

void main()
{
int *p;

p=new int;
*p=10;
cout<<"Answer = "<<*p<<endl;
delete p;
cout<<"The answer after delete = "<<p<<endl;
getch();

}

Output :
Answer = 10

The answer after delete = 0x8f830dd0

Output :
Answer = 10

The answer after delete = 0x8f830dd0

Output :
Answer = 10

The answer after delete = 0x8f830dd0

Output :
Answer = 10

The answer after delete = 0x8f830dd0

String

• It is the collection of group of character.
• Strcat() concatenates the source string at the end of the target string.
• Strlen() finds the length of the string.
• Strlwr converts a string into lower case.
• Strupr converts a string into upper case.
• Strrev reverses the sting.
• Strset set all character of string to given character.
• Strchr finds first occurance of a given character in string.
• Strdup duplicates the string.

• It is the collection of group of character.
• Strcat() concatenates the source string at the end of the target string.
• Strlen() finds the length of the string.
• Strlwr converts a string into lower case.
• Strupr converts a string into upper case.
• Strrev reverses the sting.
• Strset set all character of string to given character.
• Strchr finds first occurance of a given character in string.
• Strdup duplicates the string.

• It is the collection of group of character.
• Strcat() concatenates the source string at the end of the target string.
• Strlen() finds the length of the string.
• Strlwr converts a string into lower case.
• Strupr converts a string into upper case.
• Strrev reverses the sting.
• Strset set all character of string to given character.
• Strchr finds first occurance of a given character in string.
• Strdup duplicates the string.

• It is the collection of group of character.
• Strcat() concatenates the source string at the end of the target string.
• Strlen() finds the length of the string.
• Strlwr converts a string into lower case.
• Strupr converts a string into upper case.
• Strrev reverses the sting.
• Strset set all character of string to given character.
• Strchr finds first occurance of a given character in string.
• Strdup duplicates the string.

Function overriding

• When a base class and derived class have member function with
same name ,same return type and same argument list it is called
function overriding.

• When a base class and derived class have member function with
same name ,same return type and same argument list it is called
function overriding.

• When a base class and derived class have member function with
same name ,same return type and same argument list it is called
function overriding.

• When a base class and derived class have member function with
same name ,same return type and same argument list it is called
function overriding.

CONSTRUCTOR IN DERIVED CLASS

• Constructor play an important role in initializing objects.
• As long as the base class constructor take any arguments,the derived class

need not have a constructor function.
• However if base class contains a constructor with one or more arguments

,then it is madantory for the derived class to have a constructor and pass
arguments to the base class constructor.

• Remember while applying inheritance we usually create objects using the
derived class.

• Thus it makes sense for the derived class to pass arguments to the base
class constructor.

• When both the derived class and the base class contains constructor,the
base class is executed first and then the constructor in the derived class is
executed.

• Constructor play an important role in initializing objects.
• As long as the base class constructor take any arguments,the derived class

need not have a constructor function.
• However if base class contains a constructor with one or more arguments

,then it is madantory for the derived class to have a constructor and pass
arguments to the base class constructor.

• Remember while applying inheritance we usually create objects using the
derived class.

• Thus it makes sense for the derived class to pass arguments to the base
class constructor.

• When both the derived class and the base class contains constructor,the
base class is executed first and then the constructor in the derived class is
executed.

CONSTRUCTOR IN DERIVED CLASS

• Constructor play an important role in initializing objects.
• As long as the base class constructor take any arguments,the derived class

need not have a constructor function.
• However if base class contains a constructor with one or more arguments

,then it is madantory for the derived class to have a constructor and pass
arguments to the base class constructor.

• Remember while applying inheritance we usually create objects using the
derived class.

• Thus it makes sense for the derived class to pass arguments to the base
class constructor.

• When both the derived class and the base class contains constructor,the
base class is executed first and then the constructor in the derived class is
executed.

• Constructor play an important role in initializing objects.
• As long as the base class constructor take any arguments,the derived class

need not have a constructor function.
• However if base class contains a constructor with one or more arguments

,then it is madantory for the derived class to have a constructor and pass
arguments to the base class constructor.

• Remember while applying inheritance we usually create objects using the
derived class.

• Thus it makes sense for the derived class to pass arguments to the base
class constructor.

• When both the derived class and the base class contains constructor,the
base class is executed first and then the constructor in the derived class is
executed.

• In case of multiple inheritance ,the base classes are constructed in the
order in which they appear in the declaration of the derived class.

• Similarly in multilevel inheriatance,the consrtuctors will be executed
in the order of inheritance.

• Since the derived class takes the responsibility of supplying initial
values to its base classes,we supplythe initia value that are required
by all classes together,when a derivwd class object is declared.

• The constructors of the derived class receives the entire list of values
as its arguments and passes them on to the base class constructor in
which they are declared in the derived class.

• In case of multiple inheritance ,the base classes are constructed in the
order in which they appear in the declaration of the derived class.

• Similarly in multilevel inheriatance,the consrtuctors will be executed
in the order of inheritance.

• Since the derived class takes the responsibility of supplying initial
values to its base classes,we supplythe initia value that are required
by all classes together,when a derivwd class object is declared.

• The constructors of the derived class receives the entire list of values
as its arguments and passes them on to the base class constructor in
which they are declared in the derived class.

• In case of multiple inheritance ,the base classes are constructed in the
order in which they appear in the declaration of the derived class.

• Similarly in multilevel inheriatance,the consrtuctors will be executed
in the order of inheritance.

• Since the derived class takes the responsibility of supplying initial
values to its base classes,we supplythe initia value that are required
by all classes together,when a derivwd class object is declared.

• The constructors of the derived class receives the entire list of values
as its arguments and passes them on to the base class constructor in
which they are declared in the derived class.

• In case of multiple inheritance ,the base classes are constructed in the
order in which they appear in the declaration of the derived class.

• Similarly in multilevel inheriatance,the consrtuctors will be executed
in the order of inheritance.

• Since the derived class takes the responsibility of supplying initial
values to its base classes,we supplythe initia value that are required
by all classes together,when a derivwd class object is declared.

• The constructors of the derived class receives the entire list of values
as its arguments and passes them on to the base class constructor in
which they are declared in the derived class.

• The base class constructor is are called and executed before executing
the statements in the body of the derived constructor.

• The base class constructor is are called and executed before executing
the statements in the body of the derived constructor.

Object oriented
programming using C++

Object oriented
programming using C++

By
A.NIRANJAN

ASSISTANT PROFESSOR(ECE)
SCSVMV UNIVERSITY

Object oriented
programming using C++

Object oriented
programming using C++

By
A.NIRANJAN

ASSISTANT PROFESSOR(ECE)
SCSVMV UNIVERSITY

PURE VIRTUAL FUNCTIONS

• Functions which are declared with virtual keyword inside the base
class is called as pure virtual functions.

• These functions are always initialized to zero(does not utilize the
property of base class).

• It is redefined in the derived class.
• The class which contains these pure virtual functions are called as

abstract base class.
• SYNTAX: virtual returntype function name=0

• Functions which are declared with virtual keyword inside the base
class is called as pure virtual functions.

• These functions are always initialized to zero(does not utilize the
property of base class).

• It is redefined in the derived class.
• The class which contains these pure virtual functions are called as

abstract base class.
• SYNTAX: virtual returntype function name=0

PURE VIRTUAL FUNCTIONS

• Functions which are declared with virtual keyword inside the base
class is called as pure virtual functions.

• These functions are always initialized to zero(does not utilize the
property of base class).

• It is redefined in the derived class.
• The class which contains these pure virtual functions are called as

abstract base class.
• SYNTAX: virtual returntype function name=0

• Functions which are declared with virtual keyword inside the base
class is called as pure virtual functions.

• These functions are always initialized to zero(does not utilize the
property of base class).

• It is redefined in the derived class.
• The class which contains these pure virtual functions are called as

abstract base class.
• SYNTAX: virtual returntype function name=0

Pure virtual functions

#include<iostream.h>
#include<conio.h>
class shape
{
protected:

float d1,d2;

#include<iostream.h>
#include<conio.h>
class shape
{
protected:

float d1,d2;

class triangle:public shape
{
public:
float area()

{
return 0.5*d1*d2;

}
};

class triangle:public shape
{
public:
float area()

{
return 0.5*d1*d2;

}
};

public:
void input()
{
cin>>d1>>d2;
}
virtual float area()=0;
};

public:
void input()
{
cin>>d1>>d2;
}
virtual float area()=0;
};

class rectangle:public shape
{

public:
float area()
{
return d1*d2;
}
};

class rectangle:public shape
{

public:
float area()
{
return d1*d2;
}
};

void main()
{
triangle t;
clrscr();
cout<<"Enter base and height : "<<endl;
t.input();
cout<<"Area of the triangle = "<<t.area()<<endl;
rectangle r;
cout<<"Enter length and breadth : "<<endl;
r.input();

void main()
{
triangle t;
clrscr();
cout<<"Enter base and height : "<<endl;
t.input();
cout<<"Area of the triangle = "<<t.area()<<endl;
rectangle r;
cout<<"Enter length and breadth : "<<endl;
r.input();

void main()
{
triangle t;
clrscr();
cout<<"Enter base and height : "<<endl;
t.input();
cout<<"Area of the triangle = "<<t.area()<<endl;
rectangle r;
cout<<"Enter length and breadth : "<<endl;
r.input();

void main()
{
triangle t;
clrscr();
cout<<"Enter base and height : "<<endl;
t.input();
cout<<"Area of the triangle = "<<t.area()<<endl;
rectangle r;
cout<<"Enter length and breadth : "<<endl;
r.input();

cout<<"Area of rectangle = "<<r.area()<<endl;
getch();
}
Output :
Enter base and height :
4
5
Area of the triangle = 10
Enter length and breadth :
2.5
6.5
Area of rectangle = 16.25

cout<<"Area of rectangle = "<<r.area()<<endl;
getch();
}
Output :
Enter base and height :
4
5
Area of the triangle = 10
Enter length and breadth :
2.5
6.5
Area of rectangle = 16.25

cout<<"Area of rectangle = "<<r.area()<<endl;
getch();
}
Output :
Enter base and height :
4
5
Area of the triangle = 10
Enter length and breadth :
2.5
6.5
Area of rectangle = 16.25

cout<<"Area of rectangle = "<<r.area()<<endl;
getch();
}
Output :
Enter base and height :
4
5
Area of the triangle = 10
Enter length and breadth :
2.5
6.5
Area of rectangle = 16.25

Virtual function

• Avoids the multiple copies of base class.

BASE
CLASS

C1

DERIVE
D CLASS

C2
DERIVED
CLASS C3

DERIVED
CLASS C4

• Avoids the multiple copies of base class.

Virtual function

• When we use the same function name in both the base and derived
classes,the function in base class is declared as virtual using the
keyword virtual preceeding its normal declaration.

• When a function is made virtual ,C++ determines which function to
use at run time based on the type of the object pointed to by the
base pointer ,rather than the type of the pointer.

• Thus by making the base pointer to point to different objects we can
execute different version of the virtual functions.

• When we use the same function name in both the base and derived
classes,the function in base class is declared as virtual using the
keyword virtual preceeding its normal declaration.

• When a function is made virtual ,C++ determines which function to
use at run time based on the type of the object pointed to by the
base pointer ,rather than the type of the pointer.

• Thus by making the base pointer to point to different objects we can
execute different version of the virtual functions.

• When we use the same function name in both the base and derived
classes,the function in base class is declared as virtual using the
keyword virtual preceeding its normal declaration.

• When a function is made virtual ,C++ determines which function to
use at run time based on the type of the object pointed to by the
base pointer ,rather than the type of the pointer.

• Thus by making the base pointer to point to different objects we can
execute different version of the virtual functions.

• When we use the same function name in both the base and derived
classes,the function in base class is declared as virtual using the
keyword virtual preceeding its normal declaration.

• When a function is made virtual ,C++ determines which function to
use at run time based on the type of the object pointed to by the
base pointer ,rather than the type of the pointer.

• Thus by making the base pointer to point to different objects we can
execute different version of the virtual functions.

Virtual function

#include<iostream.h>
#include<conio.h>
class c1
{
public:
void c1function()
{
cout<<"C1 class function "<<endl;
}

};

#include<iostream.h>
#include<conio.h>
class c1
{
public:
void c1function()
{
cout<<"C1 class function "<<endl;
}

};

class c2:public virtual c1
{
public:
void c2function()
{
cout<<"C2 class function "<<endl;
}
};

class c2:public virtual c1
{
public:
void c2function()
{
cout<<"C2 class function "<<endl;
}
};

class c2:public virtual c1
{
public:
void c2function()
{
cout<<"C2 class function "<<endl;
}
};

class c2:public virtual c1
{
public:
void c2function()
{
cout<<"C2 class function "<<endl;
}
};

class c3:public virtual c1
{
public:
void c3function()
{

cout<<"C3 class function "<<endl;
}
};

class c3:public virtual c1
{
public:
void c3function()
{

cout<<"C3 class function "<<endl;
}
};

class c3:public virtual c1
{
public:
void c3function()
{

cout<<"C3 class function "<<endl;
}
};

class c3:public virtual c1
{
public:
void c3function()
{

cout<<"C3 class function "<<endl;
}
};

class c4:public c2,public c3
{
public:
void c4function()
{
cout<<"C4 class function "<<endl;
}
};

class c4:public c2,public c3
{
public:
void c4function()
{
cout<<"C4 class function "<<endl;
}
};

class c4:public c2,public c3
{
public:
void c4function()
{
cout<<"C4 class function "<<endl;
}
};

class c4:public c2,public c3
{
public:
void c4function()
{
cout<<"C4 class function "<<endl;
}
};

void main()
{
c4 x;
clrscr();
x.c1function();
x.c2function();
x.c3function();
x.c4function();
getch();
}

void main()
{
c4 x;
clrscr();
x.c1function();
x.c2function();
x.c3function();
x.c4function();
getch();
}

Output :
C1 class function
C2 class function
C3 class function
C4 class function

Output :
C1 class function
C2 class function
C3 class function
C4 class function

Friend function

• Non member function which is used to access the private data of the
class is called as friend function.

• Friend function, although not a member function ,has full access
rights to private member of the class.

• Function declaration should be preceeded by a keyword friend.
• The function is defined elsewhere in the program like a normal C++

function.

• Non member function which is used to access the private data of the
class is called as friend function.

• Friend function, although not a member function ,has full access
rights to private member of the class.

• Function declaration should be preceeded by a keyword friend.
• The function is defined elsewhere in the program like a normal C++

function.

• Non member function which is used to access the private data of the
class is called as friend function.

• Friend function, although not a member function ,has full access
rights to private member of the class.

• Function declaration should be preceeded by a keyword friend.
• The function is defined elsewhere in the program like a normal C++

function.

• Non member function which is used to access the private data of the
class is called as friend function.

• Friend function, although not a member function ,has full access
rights to private member of the class.

• Function declaration should be preceeded by a keyword friend.
• The function is defined elsewhere in the program like a normal C++

function.

• A friend function possess certain special characteristics:
• It is not in the scope of the class to which it has been declared as

friend.
• Since it is not in the scope of the class ,it cannot be called using the

object of that class.
• It can be invoked like a normal function without the help of any

object.
• Unlike the member function,it cannot access the member names

directly and has to use an object name and dot membership operator
with each member name.

• A friend function possess certain special characteristics:
• It is not in the scope of the class to which it has been declared as

friend.
• Since it is not in the scope of the class ,it cannot be called using the

object of that class.
• It can be invoked like a normal function without the help of any

object.
• Unlike the member function,it cannot access the member names

directly and has to use an object name and dot membership operator
with each member name.

• A friend function possess certain special characteristics:
• It is not in the scope of the class to which it has been declared as

friend.
• Since it is not in the scope of the class ,it cannot be called using the

object of that class.
• It can be invoked like a normal function without the help of any

object.
• Unlike the member function,it cannot access the member names

directly and has to use an object name and dot membership operator
with each member name.

• A friend function possess certain special characteristics:
• It is not in the scope of the class to which it has been declared as

friend.
• Since it is not in the scope of the class ,it cannot be called using the

object of that class.
• It can be invoked like a normal function without the help of any

object.
• Unlike the member function,it cannot access the member names

directly and has to use an object name and dot membership operator
with each member name.

• It can be declared either in the public or private part of the class
without affecting its meaning.

• Usually,it has the objects as arguments.
• Syntax:

Class ABC
{

Public:
friend void xyz(void);
};

• It can be declared either in the public or private part of the class
without affecting its meaning.

• Usually,it has the objects as arguments.
• Syntax:

Class ABC
{

Public:
friend void xyz(void);
};

• It can be declared either in the public or private part of the class
without affecting its meaning.

• Usually,it has the objects as arguments.
• Syntax:

Class ABC
{

Public:
friend void xyz(void);
};

• It can be declared either in the public or private part of the class
without affecting its meaning.

• Usually,it has the objects as arguments.
• Syntax:

Class ABC
{

Public:
friend void xyz(void);
};

Program-1(TO print a=10 and b=20)

#include<iostream.h>
#include<conio.h>

class test
{

private:
int a,b;
public:
friend void print(test);

};

#include<iostream.h>
#include<conio.h>

class test
{

private:
int a,b;
public:
friend void print(test);

};

Program-1(TO print a=10 and b=20)

void print(test t)
{
t.a=10;
t.b=20;
cout<<"a = "<<t.a<<endl;
cout<<"b = "<<t.b<<endl;
}
void main()

void print(test t)
{
t.a=10;
t.b=20;
cout<<"a = "<<t.a<<endl;
cout<<"b = "<<t.b<<endl;
}
void main()

void print(test t)
{
t.a=10;

t.b=20;
cout<<"a = "<<t.a<<endl;
cout<<"b = "<<t.b<<endl;
}

void main()

void print(test t)
{
t.a=10;

t.b=20;
cout<<"a = "<<t.a<<endl;
cout<<"b = "<<t.b<<endl;
}

void main()

{
test t;
clrscr();
print(t) ;

getch();
}

Output :
a : 10
b : 20

{
test t;
clrscr();
print(t) ;

getch();
}

Output :
a : 10
b : 20

Program-2(Largest of 2 number)

#include<iostream.h>
#include<conio.h>
class test2;

class test1
{

private:
int a;
public:

void input1()

#include<iostream.h>
#include<conio.h>
class test2;

class test1
{

private:
int a;
public:

void input1()

Program-2(Largest of 2 number)

{
cout<<"Enter the value of a : "<<endl;
cin>>a;
}
friend void big(test1,test2);
};

{
cout<<"Enter the value of a : "<<endl;
cin>>a;
}
friend void big(test1,test2);
};

{
cout<<"Enter the value of a : "<<endl;
cin>>a;
}
friend void big(test1,test2);
};

{
cout<<"Enter the value of a : "<<endl;
cin>>a;
}
friend void big(test1,test2);
};

class test2
{
private:
int b;
public:
void input2()
{
cout<<"Enter the value of b : "<<endl;
cin>>b;
}

class test2
{
private:
int b;
public:
void input2()
{
cout<<"Enter the value of b : "<<endl;
cin>>b;
}

class test2
{
private:
int b;
public:
void input2()
{
cout<<"Enter the value of b : "<<endl;
cin>>b;
}

class test2
{
private:
int b;
public:
void input2()
{
cout<<"Enter the value of b : "<<endl;
cin>>b;
}

friend void big(test1,test2);
};
void big(test1 t1,test2 t2)
{
if(t1.a>t2.b)
{

cout<<"Biggest = "<<t1.a<<endl;
}

else if(t2.b>t1.a)

friend void big(test1,test2);
};
void big(test1 t1,test2 t2)
{
if(t1.a>t2.b)
{

cout<<"Biggest = "<<t1.a<<endl;
}

else if(t2.b>t1.a)

{
cout<<"Biggest = "<<t2.b<<endl;

}
else
{
cout<<"Both are equal"<<endl;
}
}

{
cout<<"Biggest = "<<t2.b<<endl;

}
else
{
cout<<"Both are equal"<<endl;
}
}

void main()
{
test1 t1;
test2 t2;
clrscr();
t1.input1();
t2.input2();
big(t1,t2);
getch();
}

void main()
{
test1 t1;
test2 t2;
clrscr();
t1.input1();
t2.input2();
big(t1,t2);
getch();
}

Templates

• Templates is one of the features added to C++ recently.
• It is a new concept which enables us to define generic classes and

function and thus provide support for generic programming.
• Generic programming is an approach where generic types are used as

parameters in algorithms so that they work for a variety of suitable
data types and data structures.

• Template can be used to create family of function or classes.
• For example,a class template for an array class would be enable us to

create arrays of various data types such as int array and float array.

• Templates is one of the features added to C++ recently.
• It is a new concept which enables us to define generic classes and

function and thus provide support for generic programming.
• Generic programming is an approach where generic types are used as

parameters in algorithms so that they work for a variety of suitable
data types and data structures.

• Template can be used to create family of function or classes.
• For example,a class template for an array class would be enable us to

create arrays of various data types such as int array and float array.

• Templates is one of the features added to C++ recently.
• It is a new concept which enables us to define generic classes and

function and thus provide support for generic programming.
• Generic programming is an approach where generic types are used as

parameters in algorithms so that they work for a variety of suitable
data types and data structures.

• Template can be used to create family of function or classes.
• For example,a class template for an array class would be enable us to

create arrays of various data types such as int array and float array.

• Templates is one of the features added to C++ recently.
• It is a new concept which enables us to define generic classes and

function and thus provide support for generic programming.
• Generic programming is an approach where generic types are used as

parameters in algorithms so that they work for a variety of suitable
data types and data structures.

• Template can be used to create family of function or classes.
• For example,a class template for an array class would be enable us to

create arrays of various data types such as int array and float array.

• Similarly,we can define a template for a function,say mul(),that would
help us create various versions of mul() for multiplying int,float and
double type values.

• A template can be considered as a kind of macro.
• When an object of specific type is defined for actual use,template

definition for that actual case,the template definition for that class is
substituted with the required data type.

• Since a template is defined with a parameter that would be replaced
by a specified data type at the time of actual use of class or
function,templates are some times called parameterized classes or
functions.

• Similarly,we can define a template for a function,say mul(),that would
help us create various versions of mul() for multiplying int,float and
double type values.

• A template can be considered as a kind of macro.
• When an object of specific type is defined for actual use,template

definition for that actual case,the template definition for that class is
substituted with the required data type.

• Since a template is defined with a parameter that would be replaced
by a specified data type at the time of actual use of class or
function,templates are some times called parameterized classes or
functions.

• Similarly,we can define a template for a function,say mul(),that would
help us create various versions of mul() for multiplying int,float and
double type values.

• A template can be considered as a kind of macro.
• When an object of specific type is defined for actual use,template

definition for that actual case,the template definition for that class is
substituted with the required data type.

• Since a template is defined with a parameter that would be replaced
by a specified data type at the time of actual use of class or
function,templates are some times called parameterized classes or
functions.

• Similarly,we can define a template for a function,say mul(),that would
help us create various versions of mul() for multiplying int,float and
double type values.

• A template can be considered as a kind of macro.
• When an object of specific type is defined for actual use,template

definition for that actual case,the template definition for that class is
substituted with the required data type.

• Since a template is defined with a parameter that would be replaced
by a specified data type at the time of actual use of class or
function,templates are some times called parameterized classes or
functions.

TEMPLATES

Syntax:
template< class t>
Return type functionname(parameters)
{

}

Syntax:
template< class t>
Return type functionname(parameters)
{

}

Syntax:
template< class t>
Return type functionname(parameters)
{

}

Syntax:
template< class t>
Return type functionname(parameters)
{

}

TEMPLATES

#include<iostream.h>
#include<conio.h>
template <class t>
t add(t a,t b)
{

return a+b;
}

#include<iostream.h>
#include<conio.h>
template <class t>
t add(t a,t b)
{

return a+b;
}

void main()
{
clrscr();

cout<<"Sum of two integers = "<<add(3,4)<<endl;
cout<<"Sum of two float = "<<add(4.5,7.3)<<endl;
getch();
}

void main()
{
clrscr();

cout<<"Sum of two integers = "<<add(3,4)<<endl;
cout<<"Sum of two float = "<<add(4.5,7.3)<<endl;
getch();
}

void main()
{
clrscr();

cout<<"Sum of two integers = "<<add(3,4)<<endl;
cout<<"Sum of two float = "<<add(4.5,7.3)<<endl;
getch();
}

void main()
{
clrscr();

cout<<"Sum of two integers = "<<add(3,4)<<endl;
cout<<"Sum of two float = "<<add(4.5,7.3)<<endl;
getch();
}

Output :
Sum of two integers = 7
Sum of two floats = 11.8

Output :
Sum of two integers = 7
Sum of two floats = 11.8

TEMPLATES

#include<iostream.h>
#include<conio.h>
template<class t1,class t2>
float sum(t1 a,t2 b)
{

return a+b;
}

#include<iostream.h>
#include<conio.h>
template<class t1,class t2>
float sum(t1 a,t2 b)
{

return a+b;
}

void main()
{
clrscr();

cout<<"Sum of two integers : "<<sum(6,7)<<endl;
cout<<"Sum of two float : "<<sum(8.7,7.4)<<endl;
cout<<"Sum of 1 float and 1 integer : "<<sum(4.4,8)<<endl;

cout<<"Sum of 1 integer and 1 float : "<<sum(5,5.5)<<endl;
getch();

}

void main()
{
clrscr();

cout<<"Sum of two integers : "<<sum(6,7)<<endl;
cout<<"Sum of two float : "<<sum(8.7,7.4)<<endl;
cout<<"Sum of 1 float and 1 integer : "<<sum(4.4,8)<<endl;

cout<<"Sum of 1 integer and 1 float : "<<sum(5,5.5)<<endl;
getch();

}

void main()
{
clrscr();

cout<<"Sum of two integers : "<<sum(6,7)<<endl;
cout<<"Sum of two float : "<<sum(8.7,7.4)<<endl;
cout<<"Sum of 1 float and 1 integer : "<<sum(4.4,8)<<endl;

cout<<"Sum of 1 integer and 1 float : "<<sum(5,5.5)<<endl;
getch();

}

void main()
{
clrscr();

cout<<"Sum of two integers : "<<sum(6,7)<<endl;
cout<<"Sum of two float : "<<sum(8.7,7.4)<<endl;
cout<<"Sum of 1 float and 1 integer : "<<sum(4.4,8)<<endl;

cout<<"Sum of 1 integer and 1 float : "<<sum(5,5.5)<<endl;
getch();

}

Output :
Sum of two integers : 13.0
Sum of two float : 16.1
Sum of 1 float and 1 integer : 12.4
Sum of 1 integer and 1 float : 10.5

Output :
Sum of two integers : 13.0
Sum of two float : 16.1
Sum of 1 float and 1 integer : 12.4
Sum of 1 integer and 1 float : 10.5

Output :
Sum of two integers : 13.0
Sum of two float : 16.1
Sum of 1 float and 1 integer : 12.4
Sum of 1 integer and 1 float : 10.5

Output :
Sum of two integers : 13.0
Sum of two float : 16.1
Sum of 1 float and 1 integer : 12.4
Sum of 1 integer and 1 float : 10.5

Templates using ARRAYS

#include<iostream.h>
#include<conio.h>

Template< class t>
t sum(t a[],int size)

{
t s=0;
for(int i=0;i<size;i++)
{

s=s+a[i];
return s;

}

#include<iostream.h>
#include<conio.h>

Template< class t>
t sum(t a[],int size)

{
t s=0;
for(int i=0;i<size;i++)
{

s=s+a[i];
return s;

}

Templates using ARRAYS

Void main()
{
int x[5]={10,20,30,40,50};
float y[3]={1.1,2.1,3.2};
clrscr();
cout<<“int array elements sum=“<<sum(x,5)<<endl;
Cout<<“float array elements sum=“<<float(y,3)<<endl;
getch();
}

Void main()
{
int x[5]={10,20,30,40,50};
float y[3]={1.1,2.1,3.2};
clrscr();
cout<<“int array elements sum=“<<sum(x,5)<<endl;
Cout<<“float array elements sum=“<<float(y,3)<<endl;
getch();
}

Void main()
{
int x[5]={10,20,30,40,50};
float y[3]={1.1,2.1,3.2};
clrscr();
cout<<“int array elements sum=“<<sum(x,5)<<endl;
Cout<<“float array elements sum=“<<float(y,3)<<endl;
getch();
}

Void main()
{
int x[5]={10,20,30,40,50};
float y[3]={1.1,2.1,3.2};
clrscr();
cout<<“int array elements sum=“<<sum(x,5)<<endl;
Cout<<“float array elements sum=“<<float(y,3)<<endl;
getch();
}

OUTPUT:

int array elements sum=150
float array elements sum=6.4

Overlaoding of Templates

#include<iostream.h>
#include<conio.h>
template< class t>

t sum(t a ,t b)
{
return a+b;

}

#include<iostream.h>
#include<conio.h>
template< class t>

t sum(t a ,t b)
{
return a+b;

}

Overlaoding of Templates

template < class t>
t sum(t a, t b, t c)

{
return a+b+c;

}
Void main()
{
Clrscr();

template < class t>
t sum(t a, t b, t c)

{
return a+b+c;

}
Void main()
{
Clrscr();

cout<<“two int sum”=<<sum(10,20)<<endl;
cout<<“two float sum”=<<sum(10.5,20.5)<<endl;
cout<<“three float sum”=<<sum(1.5,2.5,3.5)<<endl;
cout<<“three int sum’’=<<sum(1,2,3)<<endl;
getch();

}

cout<<“two int sum”=<<sum(10,20)<<endl;
cout<<“two float sum”=<<sum(10.5,20.5)<<endl;
cout<<“three float sum”=<<sum(1.5,2.5,3.5)<<endl;
cout<<“three int sum’’=<<sum(1,2,3)<<endl;
getch();

}

cout<<“two int sum”=<<sum(10,20)<<endl;
cout<<“two float sum”=<<sum(10.5,20.5)<<endl;
cout<<“three float sum”=<<sum(1.5,2.5,3.5)<<endl;
cout<<“three int sum’’=<<sum(1,2,3)<<endl;
getch();

}

cout<<“two int sum”=<<sum(10,20)<<endl;
cout<<“two float sum”=<<sum(10.5,20.5)<<endl;
cout<<“three float sum”=<<sum(1.5,2.5,3.5)<<endl;
cout<<“three int sum’’=<<sum(1,2,3)<<endl;
getch();

}

Output:

two int sum=30
two float sum=31
three float sum=7.5

three int sum=6

two int sum=30
two float sum=31
three float sum=7.5

three int sum=6

Class template

#include<iostream.h>
#include<conio.h>

template<class t>
class test
{
private:
t a,b;
public:

#include<iostream.h>
#include<conio.h>

template<class t>
class test
{
private:
t a,b;
public:

void input()
{
cin>>a>>b;
}

t sum()
{

return a+b;
}

};

void input()
{
cin>>a>>b;
}

t sum()
{

return a+b;
}

};

template<class t>
void test<t>::sum()
{
cout<< a+b<<endl;
}

template<class t>
void test<t>::sum()
{
cout<< a+b<<endl;
}

void main()
{
clrscr();
test <int>t1;
test <float>t2;
cout<<"Enter the two integers : "<<endl;

void main()
{
clrscr();
test <int>t1;
test <float>t2;
cout<<"Enter the two integers : "<<endl;

void main()
{
clrscr();
test <int>t1;
test <float>t2;
cout<<"Enter the two integers : "<<endl;

void main()
{
clrscr();
test <int>t1;
test <float>t2;
cout<<"Enter the two integers : "<<endl;

t1.input();
cout<<"Sum of two integers : "<<t1.sum()<<endl;
cout<<"Enter the two floats : "<<endl;
t2.input();
cout<<"Sum of two floats : "<<t2.sum()<<endl;
getch();
}

t1.input();
cout<<"Sum of two integers : "<<t1.sum()<<endl;
cout<<"Enter the two floats : "<<endl;
t2.input();
cout<<"Sum of two floats : "<<t2.sum()<<endl;
getch();
}

t1.input();
cout<<"Sum of two integers : "<<t1.sum()<<endl;
cout<<"Enter the two floats : "<<endl;
t2.input();
cout<<"Sum of two floats : "<<t2.sum()<<endl;
getch();
}

t1.input();
cout<<"Sum of two integers : "<<t1.sum()<<endl;
cout<<"Enter the two floats : "<<endl;
t2.input();
cout<<"Sum of two floats : "<<t2.sum()<<endl;
getch();
}

Output :
Enter the two integers :
3
4
Sum of two integers : 7
Enter the two floats :3.5
6.5
Sum of two floats : 10

Output :
Enter the two integers :
3
4
Sum of two integers : 7
Enter the two floats :3.5
6.5
Sum of two floats : 10

Program-2

#include<iostream.h>
#include<conio.h>
class test2;
class test1
{

private:
int a;

public:
void input1()

#include<iostream.h>
#include<conio.h>
class test2;
class test1
{

private:
int a;

public:
void input1()

Virtual base class

• .Virtual base class used in virtual inheritance in a way of preventing
multiple instances of a given class appearing in an inheritance
hierarchy when using multiple inheritance.

• Abstract classes:
• Abstract class is one that is not used to create objects.
• Abstract class is designed only to act as a base class(to be inherited by

other classes)
• It is a design concept in program development and provides a base

upon which other classes may be built.

• .Virtual base class used in virtual inheritance in a way of preventing
multiple instances of a given class appearing in an inheritance
hierarchy when using multiple inheritance.

• Abstract classes:
• Abstract class is one that is not used to create objects.
• Abstract class is designed only to act as a base class(to be inherited by

other classes)
• It is a design concept in program development and provides a base

upon which other classes may be built.

• .Virtual base class used in virtual inheritance in a way of preventing
multiple instances of a given class appearing in an inheritance
hierarchy when using multiple inheritance.

• Abstract classes:
• Abstract class is one that is not used to create objects.
• Abstract class is designed only to act as a base class(to be inherited by

other classes)
• It is a design concept in program development and provides a base

upon which other classes may be built.

• .Virtual base class used in virtual inheritance in a way of preventing
multiple instances of a given class appearing in an inheritance
hierarchy when using multiple inheritance.

• Abstract classes:
• Abstract class is one that is not used to create objects.
• Abstract class is designed only to act as a base class(to be inherited by

other classes)
• It is a design concept in program development and provides a base

upon which other classes may be built.

	UNIT 1.pdf
	unit2.pdf
	UNIT 3.pdf
	UNIT 4.pdf
	unit 5.pdf

