UNIT-1(REVISED MATERIAL)

triking feature of oops

Emphasis is on data rather than procedure
Programs are divided into what are known as objects.
Data structure are assigned such that they characterize the objects.

Functions that operate on the data of an object are tied together in
the data structure.

Data is hidden and cannot be accessed by external functions.
Objects may communicate with each other through functions.
New data and functions can be added easily whenever necessary.
Follows bottom up approach in program design.

“haracteristics of oops

Following is the characteristics of groups:
Classes

Objects

Data Abstraction and Encapsulation
Inheritance

Polymorphism

Dynamic binding

M essage passing

“lasses

It contains data and functionsto manipulate on that data

The entire set of data and function of object can be made user defined data type
with the help of aclass.

Once the class has been defined we can create any number of objects belonging tc
that class.(Class is a collection of objects of similar type)

qu%rtl e%bj ect is associated with the data of the type class with which they are
cr .

By default the data members of the class are private.

lasses

SYNTAX: class classhame
{
private:
data members;
public:
functions;

}

bjects

Basic run time entities in object oriented system.

They may represent a person,a place,a bankaccount,a table of data ol
any item that the program has to handle.

They may also represent user defined data such as vectors,time ,list
etc...

Programming problem is analysed interms of objects and nature of
the communication between them.

Program objects should be choosen so that they match closely with
the real world objects.

bjects

Objects are the variables of the type class
Objects take up a space in memory and have an associated address.

When a program is executed objects interact with each other by sending
messages to one another.

For example,if “customer’ and “account’ are two objects in a
program,then the customer object may send a message to the account
object requesting for the bank balance.

With the help of dot operator objects access the public data members of
the class

Syntax: classname object name;
example: fruit mango;

#include<iostream.h>
#include<conio.h>
class add

{

private:

int a,b,c;

public:

{

void input()

{

cout<<“Enter the value of a and b”<<endl;

}

Void process()

{

c=a+b;

}

void output()
{

cout<<“Answer="“<<c<<endl;

}

oid main()
add a;
clrscr();
a.input();
a.process();
a.output();
getch();

}

Enter the value of a and b:50

60
Answer=110

Enter the value of a and b:
50

60
Answer=110

ODATA ENCAPSULATION

The wrapping of data and function into asingle unit is called data
encapsulation.

Thisis one of the Striking feature of the class.

Datais not accessible by the outside world and only those functions which
are wrapped in the class can accesiit.

Thisinsulation of datafrom direct access by the program is called as data
hiding or information hiding.

DATA ABSTRACTION

Abstraction: Representing the essential feature without including the
background details or explanation is called as data abstraction.

Classes uses the concept of abstraction and are defined as alist of abstract

attributes (data members) such as weight,height,size,cost and functions to operat:
on these attributes.

These attributes are sometimes called as data member s because they hold the
Information.

DATA ABSTRACTION

The function that operate on these data are sometimes called as
methods or member functions.

Since the classes uses the concept of data abstraction it iscalled as
Abstract Data Type(ADT)

NHERITANCE

I nheritance is the process by which objects of one class acquire the properties of objects
of another class.

Process of deriving anew class from the existing classis aso called as inheritance.
It supports the concept of hierchial classification.
For example bird “robin”is a part of the class “flying birds” which again part of the class

“bird”.
Each derived class shares common characteristics with the class from which it derived.

The concept of inheritance provides the concept of reusability.

Reusability means we can add additional feature to the existing class
without modifying it.

Thisis possible by deriving a new class from the existing one.
The new class will have the combined feature of both these classes.

Through inheritance we can eliminate redundant code and extend the use
of exisiting class

>OLYMORPHISM

Ability to take more than one form.

Polymorphism means one name,multiple forms

Operation may exhibit different behaviours in different instance.
Behaviour depends upon the type of data used in the operation.

for example consider the operation of addition. For two numbers,operation will
generate a sum.

>OLYMORPHISM

If the operands are strings ,then the operation will produce athird
string by concatenation.

The process of making an operator to exhibit different behavior in
different instances is called as oper ator overloading.

Making a single function to perform several task is called as function
overloading.

dynamic binding

Binding refers to linking of a procedure call to the function to be
executed in response to the call.

Dynamic binding (also known as late binding)means that the function
associated with the given procedure call is not known until the time

of the call at run time.

A function call associated with a polymorphic reference depends on
the dynamic type of that reference.

Viessage passing

Contains set of objects that communicate with each other by sending
and receiving information to one another.

The process of programming in an object oriented
language.therefore,involves the following steps:

1.Creating classes that defines objects and their behavior.
2.Creating objects from class definition.
3.Establishing communication among objects.

Objects communicate with each other by sending and receiving
information much the same way as people pass messages to one another.

A message for an object is the request for the execution of a procedure
(function)

It will invoke(activate) afunction in the receiving object that generate the
desired result.

It involves specifying the name of the object,name of the function(message
and the information to be sent.

employee.salary(name)

(WY

object message information

Decision control instructions

1)if statement
2)if else statement
3)Nested if else statement
If statement:
If (condition)
{
statements,
statements,;

}

syntax: (if else statement)
if(condition)

{
statements,

statements,

}

else

{

statements,
statements;

}

VEN OR ODD using if else statement

#include<iostream.h>
#include<conio.h>
void main()
{
Int n;
clrscr();
cout<<"Enter the value of n : "<<endl;
cin>>n;
1f(n%2==0)
{

cout<<"Given number is Even'"<<end!:

-VEN OR ODD USING IF ELSE

}

else

{

cout<<"Given number is Odd"<<endl:

}
getch();

utput :
nter thevalueof n:

iven number is Odd

Nested if else:

If(condition)
{

Statement;
Ise

f(condition)

tatements;

|se

{

Statements;

}

JREATEST OF THREE NUMBER USING NESTED

F ELSE
YES /I NO
h

B>C
YES O
Y NO
GREATEST

GREATES

T

JREATEST OF 3 NUMBERS USING NESTED IF
-LSE

include<iostream.h>
include<conio.h>
oid main()

int a,b,c;
clrscr();

cout<<"Enter the values of a ,b and c : "<<end]l;
cin>>a>>b>>c;

JREATEST OF 3 NUMBERS USING NESTED IF
-LSE

.:(a>b)

f(a>c)

;out<<"a is greatest number'<<endl;
Ise

out<<"cis greatest number"<<endl;

JREATEST OF 3 NUMBERS USING NESTED IF
-LSE

o|se
f(b>c)

cout<<"b is greatest number'<<endl;

}

JREATEST OF 3 NUMBERS USING NESTED IF
-LSE

| se

{

out<<"c is greatest number"<<endl;

%

+
jetch();

ODUTPUT:

nter the valuesof ab and ¢ ;

»
D
J

1S greatest number

L00p control instruction

1)WHILE LOOP
2)FOR LOOP
3)DO WHILE LOOP.

Nhile loop

his is a loop structure,but an entry controlled loop.
he syntax is as follows:
vhile(condition is true)

{

action 1;

}

action?2;

NHILE LOOP

INITIALISATION

BODY OF THE
LOOP

\DD

N

al

TION OF TWO NUMBERS 3 times USING

_E LOOP

1NC

ude<iostream.h>

include<conio.h>

yoid main()

{

it ab,c,l:

1=1;

\DDITION OF TWO NUMBERS USING WHILE
OO0P

Vhile(i<=3)

out<<“enter the value of a and b”<<endl;
=a+b;

out<<“answer=“<<c<<endl;

=1+1;

etch();

utput

Enter the value of a and b:4
2

answer=6

Enter the value of a and b:4

3
answer=/

Enter the value of a and b:4
6
answer=10

-ACTORIAL OF GIVEN NUMBER USING WHILE
OO0P

1nclude<iostream.h>
Include<conio.h>

/oid main()

{

1t i,n,fact;

1=1;
fact=1;

-ACTORIAL OF GIVEN NUMBER USING WHILE
OO0P

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;
While(i<=n)

{

fact=fact*i;

i=i+1;

}

Cout<<“answer="“<<fact<<endl;
getch();

}

-ACTORIAL OF GIVEN NUMBER USING
vhileLOOP

OUTPUT:
Enter the value of n 3
answer=6

um of n numbers using while loop

1nclude<iostream.h>
include<conio.h>
oid main()

Int i,n,sum;

| =1

sum = 0;

clrscr();

cout<<"Enter thevaueof n: "<<endl;
cin>>n;

um of n numbers using while loop
vhile(i<=n)

um = sum + i;

= |+1;

%

out<<"Answer : "<<sum<<end!;
etch();

utput

Enter the value of n:3

Answer:6

-OR LOOP

he for is an entry controlled loop and is used when an action is to be
epeated for a predetermined number of times .

YNTAX FOR FOOL LOOP:
for(initialization;condition;increment)

{

statemets;

}

\DDITION OF TWO NUMBERS 3 times USING
or LOOP

1nclude<iostream.h>
include<conio.h>

yoid main()

{
it ab,c,l:

\DDITION OF TWO NUMBERS USING for
OO0P

or(i=1;i<=3;i++)

out<<“enter the value of a and b”<<endl;
in>>a>>b;

=a+b;

out<<“answer=“<<c<<endl;

etch();

utput

Enter the value of a and b:4
2

answer=6

Enter the value of a and b:4

3
answer=/

Enter the value of a and b:4
6
answer=10

-actorial of given number using for loop
include<iostream.h>
include<conio.h>

void main()

{

Nt 1,n,fact:
fact=1;

-ACTORIAL OF GIVEN NUMBER USING FOR
OO0P

Clrscr();
Cout<<“enter the value of n”<<endl;
Cin>>n;
or(i=1;i<=n;i++)
{

fact=fact*i;

Cout<<“answer=“<<fact<<endl;
getch();

}

-0
-0

R

R

-FACTORIAL OF GIVEN NUMBER USING

-OR LOOP

OUTPUT:
Enter the value of n 3

answer=6

Do While statement

The do while is an exit controlled loop.Based on a condition,the
control is transfered back to a particular point in the program.
The syntax is as follows.

do

{
Actionl

}

While (condition is true);
action2;

)0 WHILE LOOP

YNTAX:
[o)

tatements;
Vhile(condition)

tatements;

\DD

N

al

TION OF TWO NUMBERS USING DO

_E LOOP

1NC

ude<iostream.h>

include<conio.h>

yoid main()

{

it ab,c,l:

1=1;

\DDITION OF TWO NUMBERS(3 times) USING
YO WHILE LOOP

[o)

out<<“enter the value of a and b”<<end|;
in>>a>>b;

=a+b;

out<<“answer="“<<c<<endl;

=i+1;

Vhile(i<=3)
etch();

utput

nter the value of a and b:4
2

answer=6
nter the value of a and b:4

3
answer=/

Enter the value of a and b:4
6
answer=10

ywitch case

witch statement is the multiple branching statement where based on the
ondition,the control is transfered to one of the many possible points.

include<iostream.h>
include<conio.h>

oid main()

loat a,b,c;
1t opt;
Irscr();

out<<"Enter the value of a and b : "<<end|;
“in>>a>>b;

cout<<"1.Addition"<<endl;
out<<"2.Subtraction"<<endl;
out<<"3.Multiplication"<<endl;
out<<"4.Division"<<endl;

out<<"Enter the option : "<<end];

in>>opt;
witch(opt)

ase 1:

=a+b;

out<<"Answer : "<<c<<endl;
reak;

ase 2 :

=a-b;

out<<"Answer : "<<c<<endl;
reak;

ase 3 :

=a *b;

out<<"Answer : "<<c<<endl;
reak;

ase 4 :

=a/b;

out<<"Answer : "<<c<<endl;
reak;

efault :

out<<"Invalid option"<<endlI;
reak;

teh();

Output :
Enter the valueofaand b :
2

3

1.Addition
2.Subtraction
3.Multiplication
4.Division

Enter the option :
1

\nswer : 5

3asic data types

USER DEFINED
DATA TYPE
1.STRUCTURE
2UNION
3.CLASS
4 ENUMERATION

C++ DATA
TYPES

BUILT IN DATA
TYPE

DERIVED TYPE
1.ARRAY
2.FUNCTION
3.POINTER

FLOATING
TYPE

Vianipulators in c++

Manipulators are operators used in c++ for formatting the output.
The data is manipulated by the programmer choice of display.
Types of manipulators:

Setfill()-used to fill the character

Setw()-It is used to specify the minimum no of character position,a variabl
will consume.lt takes the integer variable as its only parameter.

Setprecision()-use to set the floating point precision
Setbase()-used to convert the base of one numeric value to another value

setiosflags()-manipulator which is used to format the manner in which the
output data is displayed

resetiosflags()-used to clear the flags.

’rogram-1

#finclude<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()

{

cout<<setfill('*’);
cout<<setw(5)<<"1"<<endl;
cout<<setw(5)<<"10"<<endl;
cout<<setw(5)<<"101"<<endl;
getch();

}

’rogram-1

Output :

***3

*%%1 ()
**101

’rogram-2

To set precise value for floating value
#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()

{

clrscr();
cout<<setprecision(2)<<22/7.0<<endl;
cout<<setprecision(3)<<22/7.0<<endl;
cout<<setprecision(4)<<22/7.0<<endl;
getch();

}

Output :
3.14
3.143
3.1429

’rogram-3

#include<iostream.h>

#include<conio.h>

#include<iomanip.h>

void main()

{

clrscr();

cout<<setfill("*’);
cout<<setw(10)<<setiosflags(ios::left)<<"RAM"<<endl;
cout<<setw(10)<<setiosflags(ios::right)<<"VENKAT"<<endl;
cout<<setiosflags(ios::showpos)<<100<<endl;

getch();

}

Jutput :

FFFVENKAT
100

rogram-4(NUMBER CONVERSION USING
VIANIPULATORS)

Hinclude<iostream.h>
#include<conio.h>
#include<iomanip.h>

void main()

{

clrscr();
cout<<setbase(8)<<65<<endl;
cout<<setbase(16)<<65<<endl;
getch();

}
Output :

101

41

'ype conversion

It is basically a conversion from one type to another type.
Types:

Implicit type conversion

Explicit type conversion.

Implicit type conversion:

If a compiler converts one data into another data type automatically i
is calles implicit type conversion.

There is no data loss here.

Xample:
int b=a;
xplicit type conversion:

When data of one type is converted explicity into another data type
with the help of predefined function is called explicit type conversion

There is a data loss.

> TATIC DATA MEMBERS

A dat member of a class can be qualified as static.

The properties of static member variable are similar to C static
variable.

Static member variables has certain characteristic

1.1t is initialized to zero when the first when the object of the class is
created.No other initailisation is permitted.

Only one copy of that member is created for the entire class and is
shared by all the objects of that class,no matter how many objects
are created.

It is visible only within the class,but it life time is the entire program.

Static variables are normally used to maintain values common to the
entire class

Static member function:

Like static variable we can also have static member functions.A
member function that is declared static has the following properties.

A)A static function can have access to only other static variable
(functions or variables)in the same class. is follows

B)A static member function can be called using the class
name(instead of its objects) as follows:

Class name :: function-name;

UNIT 2(REVISED)

nline and outline functions:

The functions which are declared and defined inside the class is called as
inline functions.

The functions which are declared inside the class and defined outside
the class is called as outline function.
yntax:(for definining the function outside the class)

return type classname :: function name

{

statements;

}

is called as scope resolution operator which is used to define the membe
unction outside the class.

Inline expansion may not work if function contains static variables

Member functions(functions which access the data members)enable
the C++ programmer to prevent pollution of the global namespace
that needs to name clashes

“alculation of area and perimeter of
ectangle(inline function)

include<iostream.h>
include<conio.h>
lass rect

private :
float |,b,a,p;
yublic :

roid input()

out<<"Enter the values of | and b : "<<endlI;
in>>[>>b;

}

“alculation of area and perimeter of
ectangle(inline function)

void process()
{
a=1%*b;
p=2*(l +b);
}
void output()
{
cout<<"Area: "<<a<<end;
cout<<"Perimeter : "<<p<<endl;

}

“alculation of area and perimeter of
ectangle(inline function)

oid main()
{
rect r;
clrscr();

r.input();

r.orocess();
r.output();
getch();

}

_ALCULATION O

- A

RECTANGLE(Inline f

)utput :

nter thevaluesof | and b :
10
20

Area: 200
Perimeter : 60

REA AND PERIMETER OF

unction)

_ALCULATION OF AREA AND PERIMETER OF
RECTANGLE (outline function)

#include<iostream.h>
#include<conio.h>
class rect

{
private :
float 1,b,a,p;

_ALCULATION OF AREA AND PERIMETER OF
RECTANGLE

public :
void input();
void process();
void output();
};
void rect::input()
{
cout<<"Enter the values of | and b :"<<end];
cin>>>>b;

}

_ALCULATION OF AREA AND PERIMETER OF
RECTANGLE

oid rect::process()

=|*b;
=2*(l+b);

oid rect::output()

out<<"Area : "<<a<<endl;
out<<"Perimeter : "<<p<<end|;

_ALCULATION OF AREA AND PERIMETER OF
RECTANGLE

void main()
{
rectr;
clrscr();
r.input();
r.orocess();
r.output();
getch();

}

_ALCULATION OF AREA AND PERIMETER OF
RECTANGLE

Output :

Enter the value of land b : 20
30

Area : 600

Perimeter : 100

“alculation of simple interest using inline
unction

#include<iostream.h>
#include<conio.h>
class simple

{

private :

float p,n,r,s;

public :

void input()

{

cout<<"Enter the values of p,n,r : "<<end]l;
cin>>p>>n>>r;

void process()

{
s=(p*n*r)/100;

}
void output()

{

cout<<"Simple Intrest : "<<s<<endl;

}
5

void main()
{

simple s;
clrscr();
s.input();
s.process();
s.output();
getch();

}

“alculation of simple interest outline function

#tinclude<iostream.h>
#include<conio.h>
class simple

{

private :
loat p,n,r,s;

public :
void input();

void process();

void output();

5

“alculation of simple interest outline function

oid simple::input()

out<<"Enter the values of p,n and r :"<<endl;
in>>p>>n>>r;

oid simple::process()

=(p *n *r)/100;

“alculation of simple interest outline function

oid simple::output()

{

cout<<"Simple Interest : "<<s<<end];

J

oid main()

simple s;
clrscr();

“alculation of simple interest outline function

S.input();
s.process();
s.output();
getch();

}

“alculation of simple interest outline function

Output :

Enter the values of p,nand r:
4000

3

4.5

Simple Interest : 540.00

Viember function with arguments and no
eturn value

unction (with arguments)which does not return anything to the called
unction is called as function with no return value.

rogram:
include<iostream.h>
include<conio.h>
lass rect

rivate :
loat |,b,a,p;
ublic :

oid input(float x,float y)

Viember functions with arguments and no
eturn value

oid show()

out<<"Length : "<<lI<<end]l;
out<<"Breadth : "<<b<<endl;

oid process()

=|* b;
=2*(l+b);

Viember functions with arguments and no
eturn value

void output()

{
cout<<"Area : "<<a<<endl;
“out<<"Perimeter : "<<p<<endl;

}
Iy
void main()
{
rectr;
clrscr();
r.input(40.5,20.5);
r.show();

Viember functions with arguments and no
eturn value

r.process();
r.output();
getch();
}
Output:
Length : 40
Breadth : 20
Area : 800
Perimeter : 120

Viember functions with arguments and no
eturn value

#include<iostream.h>
#tinclude<conio.h>
class simple
{
private :
float p,n,r,s;
public :

Viember functions with arguments and no
eturn value

oid input(float x,float y,float z)

Viember functions with arguments and no
eturn value

oid show()
{
cout<<"p : "<<p<<endl;
cout<<"n : "<<n<<endl;

cout<<"r : "<<r<<endl;

}

Viember functions with arguments and no
eturn value

void process()

{
s=(p*n*r)/100;

}
void output()

{

cout<<"Simple Interest : "<<s<<endl;

}
5

Viember functions with arguments and no
eturn value

oid main()
{
simple s;
clrscr();
s.input(4000,3,4.5);
s.show();
s.process();

Viember functions with arguments and no
eturn value

.output();
etch();

Jutput:

) : 4000

;3

: 4.5

imple Interest : 150.00

Viember function with arguments and return
/alue

unction which return a value to the calling function is called as member
unction with arguments and return value.

tinclude<iostream.h>
#include<conio.h>
class large

{

private :

int a,b;

public :

oid input(int x,int y)
{
a=x;
b =y;
}

void show()

{

cout<<"a : "<<a<<endl;
cout<<"b : "<<b<<endl;

}

int process()

{
if(a>b)

{

return a;

}

else

{
return b;
}
}
};

void main()

{

large a;

clrscr();

a.input(2,3);

a.show();

int big = a.process();

cout<<"The Largest : "<<big<<end]|;
getch();

}

a:?2
b:3
The Largest : 3

onstructor

A constructor is a special member function whose task is to initialize
the object of its class.

It is special because its name same as the class name .

Constructor is invoked whenever an object of its associated class is
created.

It is called constructor because it constructs the values of the data
members of the class.

Constructor should have some special characteristic:
They should be declared in the public section
They are invoked automatically when the objects are created.

They do not have return types,not even void and therefore,and they
cannot return values.

They cannot be inherited ,though a derived class can call the base
class constructor.

Like other c++ functions,they can have default arguments.
Constructors cannot be virtual.

We cannot refer to their addresses.

An object with constructor(or destructor) cannot be used as a
member of union.

They make implicit calls to the operators new and delete when
memory location is required.

Remember when constructor is declared for the class,intialisation of
the class objects become madantory.

An explicit call to the constructor for an existing object is forbidden

TYPES OF CONSTRUCTOR

1.DEFAULT CONSRTUCTOR
2.PARAMETERIZED CONSTRUCTOR
3.OVERLOADED CONSTRUCTOR
4.COPY CONSTRUCTOR

imple Interest using default constructor

)efault constructor:Constructor without arguments are called as
lefault constructor.

include<iostream.h>
#tinclude<conio.h>
class simple
{
private :
float p,n,r,s;
public :

imple Interest using default constructor

imple Interest using default constructor

oid show()

{

out<<"p : "<<p<<end|;
cout<<'"n : "<<n<<endl;

cout<<"r : "<<r<<endl;

}

imple Interest using default constructor

oid process()

{
s=(p *n *r)/100;

}

oid output()
{

cout<<"Simple Interest : "<<s<<endl;

}
5

Default constructor

void main()
{

simple s;
clrscr();
s.show();
s.process();
s.output();
getch();

}

utput

p : 2000

n:3

r.2.5

Simple Interest : 150

d)arameterised constructor

he constructor which take arguments are called as parameterized
onstructor.

’rogram:
finclude<iostream.h>
#tinclude<conio.h>
class rect

{

private :

float l,b,a,p;

public :

’ARAMETERIZED CONSTRUCTOR

ect(float x,float y)
{

| = x;
b=y,
}

oid show() \
{

cout<<"Length = "<<l|<<endl;
cout<<"Breadth = "<<b<<endl;

} /

’ARAMETERIZED CONSTRUCTOR

oid process()
{
a=1|*b;
p=27%(l+b);
}

’ARAMETERIZED CONSTRUCTOR

oid output()
{
cout<<"Area = "<<a<<endl;

cout<<"Perimeter = "<<p<<end|;

}
5

’ARAMETERIZED CONSTRUCTOR

void main()

{

rect r(20,30);
clrscr();
r.show();
r.orocess();
r.output();
getch();

}

’ARAMETERIZED CONSTRUCTOR

Output:

Length = 20
Breadth = 30
Area : 600
Perimeter : 100

Overloaded constructor

>rocess of using 2 different types of constructor in a single program is called as
verloaded constructor.

ROGRAM:
tinclude<iostream.h>
#include<conio.h>
class simple

{

private :

float p,n,r,s;
ublic :

verloaded constructor

imple()

{

p = 2000;
n=2.5;
r=3.2;

verloaded constructor

imple(float x,float y,float z)
{

P=X
n=y;
r=z

}

verloaded constructor

void show()

{

cout<<"p : "<<p<<end!;
cout<<"n : "<<n<<endl;

cout<<"r : "<<r<<endl;

}

verloaded constructor

void process()

{
s=(p*n*r)/100;

}
void output()

{

cout<<"Simple Interest : "<<s<<endl;

}
5

verloaded constructor

oid main()

imple s,x(3000,2,5);
rscr();

show();
process();
output();

show();
process();
.output();

etch();

verloaded constructor

Output:

p : 2000

n:2.5

r.3.2

Simple Interest : 160
p : 3000

n:2

r:5

Simple Interest : 300

_opy construtor

opy constructor is used to declare and initialise the object from another
bject.

rogram:
#include<iostream.h>
#tinclude<conio.h>
class copy

{

private :

int a;

public :

_opy constructor

—opy(int x)

:X"

—_ Q) ~

void show()

{

cout<<"The value of a : "<<a<<end|;

}
5

_opy constructor

void main()
{
copy c(10);
copy y(c);
clrscr();
c.show();
y.show();
getch();

_opy constructor

Output:
The value of a: 10
The value of a: 10

NOTE:If the class has pointer variables and has some dynamic
memory allocations,then it is must to have copy constructor

Jestuctor

A destructor,as the name implies, it is used to destroy the objects that have
been created by a constructor.

Can be used to gurantee a proper clean up when an object goes out of
scope

Like a constructor ,destructor is a member function whose name is same a
the class name but is preceded by a tilde.

II;OII’ example the destuctor for the class integer can be defined as shown
elow

Syntax:
~integer()

{
}

A destructor never take any arguments nor does it return any value.

It will be invoked implicitly by the compiler upon the exit from the

program(or block or function as the case may be)to clean up storage
that is no longer accessible.

It is a good practice to declare destructors in a program since it
releases memory space for future use.

Whenever new(Memory allocation operator) is used to allocate the
memory in the constructors,we should use delete(memory release
operator) to release that memory

Jestructor

#include<iostream.h>
#include<conio.h>
Class test

{

int 3,b;

public:

{
test()

{
a=10;
b=20;
}

~test()
{

cout<<“a=“<<a<<endl;
cout<<“b="“<<b<<endl;

)

'oid main()

Irscr();

test t;

Jutput:

=20

OPERATOR OVERLOADING
(REVISION)

Jperator overloading

OPERATOR OVERLOADING is one of the many exciting features of C++
language.

Itfis an important technique that has enhanced the power of extensibility
of C++.

We have stated more than once that C++ tries to make the user defined
data types behave in much the same way as the built in types.

For instance ,C ++ permits us to add two variables of user defined types
with the same syntax that is applied to the basic types.

This means that C++ has the ability to provide the operators with a special
meaning for a data type.

The mechanism of giving such special meaning to an operator is known as
operator overloading.

Operator overloading provides a flexible option for the creation of new
definitions for most of the C++ operators.

We can almost create a new language of our own by the creative use of
function and operator overloading techniques.

We can overload all the C++ operators except the following
i)class member access operator

li)scope resolution operator(::)

lii)size operator(size off)

Iv)conditional operator(?:)

V)typeid(finding the type of the object pointed at)

Jdefining operator overloading

To define an additional task to an operator,we must specify what it
means in relation to the class to which the operator is applied.

This is done with the help of a special function ,called operator
function ,which describes the task.

The general form of an operator function is :
return type classname ::operator op(arg list)

{

function body

}

Where return type is the type of value returned by specified
operation and op is the operator being overloaded.

The op is preceded by the keyword operator.
Operator op is the function name.

Operator function must be either member function (non static) or
friend function.

A basic difference between them is that a real friend function will
have only one arguments for unary operator and two for binary
operator,while member function has no arguments for unary
operator and only one for binary operator.

This is because the object used to invoke the member function
ics passed implicitly and therefore is available for the member
unction.

This is not the case with friend function.
Arguments may be passed either by value or reference.

Operator functions are declared in the class using protypes as
follows:

Vector operator+(vector); //vector addition

Vector operatot-{}; // unary minus

friend Vector operator+(vector,vector); //vector addition
friend vector operator-(vector); // unary minus

Vector operator-(vector &a); // subtraction

The process of overloading involves the following steps;

1.Create a class that defines the data that is to be used in the
verloading operation.

2.Declare the operator function operator op() in the public part of the
class.
3.Define the operator function to implement the required operations

Jperator overloading

ypes of operator overloading:
Unary operator overloading.
Binary operator overloading.

Syntax for Unary operator overloading: (a) returntype operatorsymbol()
(unary operator overloading)

syntax for Binary operator overloading:(b)returntype operatorsymbol(class
ame explicitobjectname)

The name of the operator overloading functions are composed of the
keyword operator followed by symbol of the operator being overloaded.

Overloading operator must have atleast one operand that is in built data
type.

Let us consider the unary minus operator.
A minus operator when used as unary,takes just one operand.

We know that this operator changes the sign of an operand when
applied to basic data item.

We will see here how to overload this operator that it can be applied
to an object in much the same way as is applied to int or float
variables.

The unary minus when applied to an object should change the sign of
each of its data item.

Jnary operator overloading(Overloading of
-+ and -- opearator)

In unary operator overloading,the operator operates on single variable.

Unary operators,overloaded by means of a member functions,take no
explicit arguments

rogram:
include<iostream.h>
#include<conio.h>
class test

{

orivate :
int a;
public :
test()
{

a=1;

}

void operator++()

{

a++;

}

oid operator--()

oid output()

out<<"a : "<<a<<endl;

void main()
{
test t;

clrscr();
t++;
t.output();
t--;
t.output();
getch();

}

eversing the value of the variable using
Inary operator overloading

#include<iostream.h>
#tinclude<conio.h>
class test

{

private :

int a,b,c;

public :

test()

a=10;
b =20;
c= 30;

oid show()

out<<"a : "<<a<<endl;
out<<"b : "<<b<<endl:;

out<<"c : "<<c<<endl;

void operator-()
{
= -a;
= -b:
C =-C;
}
};

void main()
{

test t;
clrscr();
t.show();
_t’

t.show();
getch();

}

Output :
a:10

b:20
c:30
a:-10
b:-20
c:-30

Jnary opearator overloading(Reversing the
/alue of variable)

#include<iostream.h>
#include<conio.h>
class reverse

{

private:

int a,b,c;

public:

void input(int x,int y,int z)

yoid show()
cout<<” a= “<<a<<endl;
cout<<“b="<<b<<endl;

cout<<“c="“<<c<<endl;

}

void operator-()

a=-a;

=-b;
c=-C;
}

/oid main()
{
reverse r;
clrscr();
r.input(10,20,30);
r.show();
r:
r.show();

}

Jnary opearator overloading(Reversing the
/alue of variable)

#include<iostream.h>
#include<conio.h>
class reverse

{

private:

int a,b,c;

public:

void input(int x,int y,int z);
void show();
void operator-();
'
void reverse::input(int x,int y,int z)
{
a=x;
b=y;
c=z;

void reverse::show()
cout<<” a= “<<a<<endl;
cout<<“b="<<b<<endl;

cout<<“c="“<<c<<endl;

}

void reverse::operator-()

oid main()
{
reverse r;
clrscr();
r.input(10,20,30);
r.show();
r;
r.show();

}

3inary operator overloading

A binary overloading member method takes one arguments.
Overloading of comparision operator

#include<iostream.h>

#tinclude<conio.h>

class test

{

private :

int 3;

ublic :

void input()

{

cin>>a;

}

void operator==(test t2)
{

if(a==t2.a)

{

cout<<"Objects are equal'<<endl;

}

else

{
cout<<"Objects are not equal”<<end];
}
}
b

oid main()

{

test t1,t2;

clrscr();

cout<<"Enter t1 object value : "<<endl;

tl.input();

cout<<"Enter t2 object value : "<<endl;
t2.input();

t1==t2;

getch();

}

Output :

Enter the t1 object value :
2

Enter the t2 object value :
4

Objects are not equal

tring Concatenation using operator
verloading

#include<iostream.h>

#include<conio.h>

#include<string.h>
class test

{

private :

char st[50];

ublic :
void input()
{
cout<<"Enter the string : "<<end];

cin>>st;

}

void output()
{

cout<<"String : "<<st<<end|;

}

test operator+(test t2)

{

test t3;
strcpy(t3.st,st);
strcat(t3.st," ");
strcat(t3.st,t2.st);
return t3;

}

5

void main()
{

test t1,t2,t3;
clrscr();
tl.input();
t2.input();
t3 =tl1+t2;
t3.output();

getch();

}

Output :

Enter the string :
Ram

Enter the string :
kumar

String : Ram Kumar

\rrays

Arrays is a collection of similar elements.
An arrays is also known as subscripted variable.
Before using arrays its type and dimension must be declared.

All the elements of 2D Or 3D array are internally accessed using
pointers.

Arrays can be manipulated by all member function of the class

rogram to illustrate the concept of Array

#include<iostream.h>
#include<conio.h>
#tinclude<string.h>
class student

{

private :

char name[20];

int rollno,marks[6],i;
public :

void input();

void output();
};
void student::input()
{
cout<<"Enter the name and rollno : "<<endl;
cin>>name>>rollno;
cout<<"Enter six subjects marks : "<<endl;
for(i=0;i<6;i++)
{

cin>>marksli];

}

}

void student::output()

{

cout<<"Name : "<<name<<endl;
cout<<"Rollno : "<<rollno<<endI;
int total=0;

float avg;

for(i=0;i<6;i++)

{

total = total + marks|i];
}
avg = total/6;
cout<<"Total :'"<<total<<endl;
cout<<"Average : "<<avg<<end|;
cout<<"Result :";
for(i=0;i<6;i++)
{
if(marks[i]<50)
{
cout<<"Fail";
goto last;

}
}

out<<"Pass";
last :
getch();
}

void main()
{

student s;

clrscr();

s.input();

s.output();

getch();

}

Output :

Enter the name and rollno :
John

223

Enter six subjects marks :
08

97

96

90

08

97

Name : John
Rollno : 223
Total : 576

Average : 96
Result : Pass

UNIT-4

Inheritance:

Mechanism fo deriving a new class from the old class is called as
inheritance.

The old class is called as base class and the new class is called as derived
class or subclass.

A derived class can inherit some or all the traits from the base class.
Types of inheritance:

A)Single level inheritance.

B)Multiple inheritance.

C)Multilevel inheritance.

D)Hierchial inheritance.

E)Hybrid inheritance.

ingle inheritance

Process of deriving a new class with only one base class is called as single inheritance.

Derived class with only one base class is called single inheritance.

BASE CLASS

DERIVED CLASS

SYNTAX FOR DERIVED CLASS :class derived classname:visibility mode baseclass name

ingle inheritance
#include<iostream.h>
#include<conio.h>

#include<string.h>

ingle inheritance

“lass student
{
private :
char name[20];
int rollno;

ingle inheriatance

ublic :
void inputl()
{
cout<<"Enter the name and rollno : "<<endl;

cin>>name>>rollno;

}

ingle inheritance

void outputl()
cout<<"Name : "<<name<<end|;
cout<<"Rollno : "<<rollno<<end]l;

}
5

ingle inheritance

class physical:public student

{

private :

float h,w;

public :

void input2()

{

cout<<"Enter the height and weight : "<<end|;
cin>>h>>w;

}

ingle inheritance

void output2()

{

cout<<"Height : "<<h<<endl;
cout<<"Weight : "<<w<<end|;

}
5

ingle inheritance

void main()

{

physical s;
clrscr();
s.inputl();
s.input2();
s.outputl();
s.output2();
getch();

}

ingle inheritance

Output:

Enter the name and rollno :
John

223

Enter the height and weight :
186

75

Name : John

Rollno : 223

ingle inheritance

Height : 186
Weight : 75

Viultilevel inheritance

The mechanism of deriving a class from another derived class is called as
multilevel inheritance.

In multilevel inheritance constructors are executed in the order of
inheritance.

O «—® «—>

VIULTIVEL INHERITANCE

#include<iostream.h>

#include<conio.h>

#include<string.h>
class student
{
private :
char name[20];

int rollno;

public :

void inputl()

{

cout<<"Enter the name and rollno : "<<endl;

cin>>name>>rollno;

}

void outputl()
cout<<"Name : "<<name<<end|;
cout<<"Rollno : "<<rollno<<end]l;

}
5

class marks:public student
{
protected :
int m1,m2,m3,m4,m5,m6;
public :
void input2()
{

cout<<"Enter the marks : "<<endl;

cin>m1>>m2>>m3>>m4>>m5>>m6;

}
void output2()

{

cout<<"MATHS : "<<ml<<endl;
cout<<"EDC :'"<<m2<<endl;
cout<<"DSD :'"<<m3<<endl;
cout<<"SS :'"<<md<<endl;
cout<<"NT :'"<<mb5<<endl;
cout<<"OOPS : "<<mb<<endl;

}
5

class result:public marks

{

private :

int total;

float average;

public :

void output3()

{

total = m1+m2+m3+m4+m5+m6;
average = total/6;

cout<<"Total : "<<total<<endl;
cout<<"Average : "<<average<<end|;

}

};

void main()
{

result r;
clrscr();
rinputl();
r.input2();

r.outputl();
r.output2();
r.output3();
getch();

}

Output :

Enter the name and rollno :
John

223

Enter the marks :
95

92

94

96

97

99

Name : John

Rollno : 223
Maths : 95
EDC :92
DSD :94
SS : 96
NT : 97
DOPS :99
[otal =573

Average = 95

Viultiple Inheritance

The process of deriving a new class (derived class)from more than
one base class is called as Multiple inheritance.

base class(A) base class(B)

Derived class

Viultiple Inheritance

#tinclude<iostream.h>
#tinclude<conio.h>
#include<string.h>
class student

{
private :
char name[20];
int rollno;
public :

Viultiple Inheritance

class result:public marks,public student
{

private :

int total;

float average;

public :

void output3()

{

total = m1+m2+m3+m4+m5+mé6;

Viultiple Inheritance

average = total/6;
cout<<"Total = "<<total<<endl;

cout<<"Average = "<<average<<endl|;

}
5

Viultiple Inheritance

void main()
{
result r;
clrscr();
rinputl();
r.input2();
r.outputl();
r.output2();
r.output3();
getch();

}

Jutput:

Enter the name and rollno :
John

223

Enter the marks :

95

92

94

96

97

99

Jutput:

Name : John
Rollno : 223
Maths : 95
EDC :92
DSD :94
SS : 96
NT : 97
OOPS :99
Total =573

Average = 95

Hierarchial Inheritance

)efinition:In hierchial inheritance,a single class serve as a base class for mor:
han one derived class.

rogram:
include<iostream.h>
#tinclude<conio.h>
#tinclude<string.h>
class account

{

private :

“har name[20];

long int accountno;

public :

void inputl()

cout<<"Enter the name and account no : "<<endl;
cin>>name>>accountno;

}
void outputl()

{

cout<<"Account holder Name : "<<name<<endl|;
cout<<"Account Number : "<<accountno<<endl;

}
|5

class savings:public account
{
private :
int bal;
public :
void input2()
{
cout<<"Enter the balance : "<<end|;
cin>>bal;

}
void output2()

{

if(bal<500)

{

cout<<"Minimum Balance should be 500"<<end];

olse
cout<<"Your account is a Savings account"<<endl;
Iy

class current:public account
{
private :
int bal;
public :
void input2()
{
cout<<"Enter the balance : "<<end|;
cin>>bal;

}
void output2()

{
if(bal<1000)

{

cout<<"Minimum balnace should be 1000"<<endl;

}

else

{

cout<<"Your account is a Current account"<<endl;

}

}

g

void main()

{

int op;

clrscr();

cout<<"1.Savings Account"<<endl;
cout<<"2.Current Account"<<endl;
cout<<"Choose the option"<<endl;
cin>>op;

if(op==1)

(

savings s;
s.inputl();
s.input2();
s.outputl();
s.output2();
'

else if(op==2)
{

current c;
c.inputl();
c.input2();
c.outputl();
c.output2();

}

else

{

cout<<"Invalid Option"<<end]l;

}
getch();

}

Output :

1.Savings Account

2.Current Account

Choose the option

2

Enter the name and account no :
John

123456789

Enter the balance :

6000

Account holder Name : John
Account Number : 123456789
Your account is Current account

NEW OPERATOR(Memory allocation operator

The new operator can be used to create the objects of any type.This i
done as follows:

Pointer-variable =new datatype(value);
Here,pointer variable is a pointer of type data type.

The new operator allocates sufficient memory to hold a data object o
the type data type and returns the address of the object.

The data type may be any valid data type.
Pointer variable holds the address of the memory space allocated.
We can also initialize the memory using the new operator.

New operator offers the following advantage:

It automatically computes the size of the data object.we need not use
the operator sizeof.

It automatically returns the correct pointer type,so that there is no
need to use type cast

It is possible to initialize the object while creating the memory space.
Like any other operator,new and delete can be overloaded.

New operator(program-1)

#include<iostream.h>
Hinclude<conio.h>
void main()

{

int *p;

p=new int;

*p=10;

clrscr();
cout<<"Answer = "<<*p<<end|;
getch();

}

Output :

Answer =10

When the data object is no long needed, it is destroyed to release the
memory space for reuse.

Program to illustrate the concept of New operator
#include<iostream.h>

#tinclude<conio.h>

void main()

{

int *p;

p=new Int;

*p=10;
clrscr();
out<<"Answer = "<<*p<<end|;
getch();
}
Jutput :
\nswer = 10

’rogram-2

#include<iostream.h>
#include<conio.h>
void main()

{

int *p;

p=new int[5];
p[0]=10;

1=20;

1=30;

1=40;

1=50;

T O T O

clrscr();
cout<<" "<<p
cout<<" "<<p

cout<<" "<<p

out<<" "<<p[4]<<endl;

getch();
}

0
1
2

out<<" "<<p[3]<<endl;

<<endl:
<<endl:

<<endl:

’

4

’

Output :
10
20
30
40
50

’rogram-3

#include<iostream.h>
#tinclude<conio.h>
void main()

{

int *p;

Int i;

p=new int[5];
p[0]=10;

p[1]=20;

p[2]=30;
p[3]=40;
p[4]=50;
clrscr();

or(i=0;i<5;i++)
{

cout<<" '"<<pli]<<endl;

}
getch();

}
Output :

10

20

30

40

Jelete operator(Memory release opearator)

e When a data object is no longer needed ,it is destroyed to release the
memory space for reuse.The general form of its use is:

delete pointer-variables;

 The pointer variable is the pointer that points to a data object created with
new.

e delete p;
e delete q;

* |f we want to free a dynamically allocated array,we must use the following
form of delete:

delete[size] pointer variable;
e The size specifies the number of elements in the array to be freed.

’rogram:

#include<iostream.h>
#include<conio.h>

void main()

{

int *p;

p=new int;

*p=10;

cout<<"Answer = "<<*p<<end|;
delete p;

cout<<"The answer after delete = "<<p<<endl|;
getch();

Output :
Answer = 10
[he answer after delete = 0x8f830dd0

tring

It is the collection of group of character.

Strcat() concatenates the source string at the end of the target string.
Strlen() finds the length of the string.

Strlwr converts a string into lower case.

Strupr converts a string into upper case.

Strrev reverses the sting.

Strset set all character of string to given character.

Strchr finds first occurance of a given character in string.

Strdup duplicates the string.

-unction overriding

When a base class and derived class have member function with
same nhame ,same return type and same argument list it is called
function overriding.

_ONSTRUCTOR IN DERIVED CLASS

Constructor play an important role in initializing objects.

As long as the base class constructor take any arguments,the derived class
need not have a constructor function.

However if base class contains a constructor with one or more arguments
,then it is madantory for the derived class to have a constructor and pass
arguments to the base class constructor.

Remember while applying inheritance we usually create objects using the
derived class.

Thus it makes sense for the derived class to pass arguments to the base
class constructor.

When both the derived class and the base class contains constructor,the
base clags is executed first and then the constructor in the derived class is
executed.

In case of multiple inheritance ,the base classes are constructed in thi
order in which they appear in the declaration of the derived class.

Similarly in multilevel inheriatance,the consrtuctors will be executed
in the order of inheritance.

Since the derived class takes the responsibility of supplying initial
values to its base classes,we supplythe initia value that are required
by all classes together,when a derivwd class object is declared.

The constructors of the derived class receives the entire list of values
as its arguments and passes them on to the base class constructor in
which they are declared in the derived class.

The base class constructor is are called and executed before executing
the statements in the body of the derived constructor.

Object oriented
programming using C++

By
A.NIRANJAN
ASSISTANT PROFESSOR(ECE)

SCSVMV UNIVERSITY

’URE VIRTUAL FUNCTIONS

Functions which are declared with virtual keyword inside the base
class is called as pure virtual functions.

These functions are always initialized to zero(does not utilize the
property of base class).

It is redefined in the derived class.

The class which contains these pure virtual functions are called as
abstract base class.

SYNTAX: virtual returntype function name=0

ure virtual functions

#include<iostream.h>
#tinclude<conio.h>
class shape

{

protected:

float d1,d2;

class triangle:public shape
{
public:
float area()
{
return 0.5*d1*d2;
}
5

sublic:
void input()
{

cin>>d1>>d2;

}

virtual float area()=0;

5

class rectangle:public shape
{

public:

float area()

{

return d1*d2;

}

5

void main()

{

triangle t;

clrscr();

cout<<"Enter base and height : "<<endl;
t.input();

cout<<"Area of the triangle = "<<t.area()<<endl;
rectangle r;

cout<<"Enter length and breadth : "<<endI;
r.input();

cout<<"Area of rectangle = "<<r.area()<<endl;
getch();

}

Output :

Enter base and height :

4

5

Area of the triangle = 10
Enter length and breadth :
2.5

6.5

Area of rectangle = 16.25

/irtual function

Avoids the multiple copies of base class.

BASE

CLASS
Cl

N

DERIVE
D CLASS
C2

DERIVED
CLASS C3

DERIVED
CLASS C4

/irtual function

When we use the same function name in both the base and derived
classes,the function in base class is declared as virtual using the
keyword virtual preceeding its normal declaration.

When a function is made virtual ,C++ determines which function to
use at run time based on the type of the object pointed to by the
base pointer ,rather than the type of the pointer.

Thus by making the base pointer to point to different objects we can
execute different version of the virtual functions.

/irtual function

#include<iostream.h>
#include<conio.h>
class cl

{

public:

void c1function()

{

cout<<"C1 class function "<<endl;

}

class c2:public virtual c1

{

public:

void c2function()

{

cout<<"C2 class function "<<endl;
}

5

class c3:public virtual c1
{
public:
void c3function()
{
cout<<"C3 class function "<<endl;
}
5;

class c4:public c2,public c3

{

public:

void c4function()

{

cout<<"C4 class function "<<endl;
}

5

void main()

{

c4 x;

clrscr();
x.c1function();
x.c2function();
x.c3function();
x.c4function();
getch();

}

Output :
C1 class function
C2 class function

C3 class function
C4 class function

‘riend function

Non member function which is used to access the private data of the
class is called as friend function.

Friend function, although not a member function ,has full access
rights to private member of the class.

Function declaration should be preceeded by a keyword friend.

The function is defined elsewhere in the program like a normal C++
function.

A friend function possess certain special characteristics:

It is not in the scope of the class to which it has been declared as
friend.

Since it is not in the scope of the class ,it cannot be called using the
object of that class.

It can be invoked like a normal function without the help of any
object.

Unlike the member function,it cannot access the member names
directly and has to use an object name and dot membership operator
with each member name.

It can be declared either in the public or private part of the class
without affecting its meaning.

Usually,it has the objects as arguments.
Syntax:

Class ABC

{

Public:

friend void xyz(void);

5

rogram-1(TO print a=10 and b=20)

#include<iostream.h>
#tinclude<conio.h>
class test
{
private:
int a,b;
public:
friend void print(test);

5

/oid print(test t)

[
!

t.a=10;
t.b=20;
cout<<"a = "<<t.a<<endl;
cout<<"b = "<<t.b<<endl;

}

void main()

void print(test t)
{
t.a=10;
t.b=20;
~out<<"a = "<<t.a<<endl;
~out<<"b = "<<t.b<<endl;

}

yoid main()

test t;

clrscr();
print(t) ;
getch();

Output :
3 : 10
0 : 20

rogram-2(Largest of 2 number)

#tinclude<iostream.h>
#tinclude<conio.h>
class test2;

class testl

{

private:

int a;

public:

/oid inputl()

{

cout<<"Enter the value of a : "<<endl;
cin>>a;

J
friend void big(test1,test2);

5

class test2

{

private:

int b;

public:

void input2()

{

cout<<"Enter the value of b : "<<end|I;
cin>>b;

}

friend void big(test1,test2);

};
void big(testl t1,test2 t2)

{
if(tl.a>t2.b)

{

cout<<"Biggest = "<<tl.a<<endl;

}
else if(t2.b>t1.a)

{

cout<<"Biggest = "<<t2.b<<end]l;

}

o[se

{

cout<<"Both are equal'<<endl;

J
J

void main()
{

testl tl;
test2 t2;
clrscr();
tl.inputl();
t2.input2();
big(tl,t2);
getch();

}

‘emplates

Templates is one of the features added to C++ recently.

It is @ new concept which enables us to define generic classes and
function and thus provide support for generic programming.

Generic programming is an approach where generic types are used a:
parameters in algorithms so that they work for a variety of suitable
data types and data structures.

Template can be used to create family of function or classes.

For example,a class template for an array class would be enable us to
create arrays of various data types such as int array and float array.

Similarly,we can define a templ
help us create various versions
double type values.

ate for a function,say mul(),that woulc
of mul() for multiplying int,float and

A template can be considered as a kind of macro.
When an object of specific type is defined for actual use,template

definition for that actual case,t
substituted with the required ¢

he template definition for that class is
ata type.

Since a template is defined wit

N a parameter that would be replaced

by a specified data type at the time of actual use of class or
function,templates are some times called parameterized classes or

functions.

'EMPLATES

Syntax:
‘emplate< class t>
Return type functionname(parameters)

{

'EMPLATES

#include<iostream.h>
#tinclude<conio.h>
template <class t>

t add(t a,t b)

{

return a+b;

}

void main()

{

clrscr();

cout<<"Sum of two integers = "<<add(3,4)<<end]l;
cout<<"Sum of two float = "<<add(4.5,7.3)<<endl;
getch();

}

Output :
Sum of two integers =7
Sum of two floats =11.8

'EMPLATES

#include<iostream.h>
#include<conio.h>
template<class t1,class t2>
float sum(tl a,t2 b)

{

return a+b;

}

void main()

{

clrscr();

cout<<"Sum of two integers : "<<sum(6,7)<<endl;
cout<<"Sum of two float : "<<sum(8.7,7.4)<<endl;
cout<<"Sum of 1 float and 1 integer : "<<sum(4.4,8)<<end]l;
cout<<"Sum of 1 integer and 1 float : "<<sum(5,5.5)<<end]l;
getch();

}

Output :

Sum of two integers : 13.0

Sum of two float : 16.1

Sum of 1 float and 1 integer : 12.4
Sum of 1 integer and 1 float : 10.5

‘emplates using ARRAYS

#tinclude<iostream.h>
#include<conio.h>
emplate< class t>
t sum(t a[],int size)

' 5=0;
or(int i=0;i<size;i++)

s=s+ali];
oturn s;

}

Void main()

nt x[5]={10,20,30,40,50};
loat y[3]={1.1,2.1,3.2};

Irscr();
out<<“int array elements sum=“<<sum(x,5)<<endl;

out<<“float array elements sum="“<<float(y,3)<<endl;
etch();

ODUTPUT:

int array elements sum=150

float array elements sum=6.4

Jverlaoding of Templates

#include<iostream.h>
#tinclude<conio.h>
template< class t>

t sum(ta,t b)

return a+b;

template < class t>
t sum(t a,t b, t c)
{

return a+b+c;

}

'oid main()

Irscr();

cout<<“two int sum”=<<sum(10,20)<<endl;
cout<<“two float sum”=<<sum(10.5,20.5)<<end]l;
cout<<“three float sum”=<<sum(1.5,2.5,3.5)<<endl;
cout<<“three int sum’”=<<sum(1,2,3)<<endl;
getch();

Jutput:

two int sum=30
two float sum=31
three float sum=7.5
three int sum=6

“lass template

#include<iostream.h>
#tinclude<conio.h>
template<class t>
class test

{

private:

ta,b;

public:

void input()
{

cin>>a>>b;

}

t sum()

{

return a+b;

}

template<class t>
oid test<t>::sum()

{

cout<< a+b<<endl;

}

oid main()

{

clrscr();

test <int>t1;

test <float>t2;

cout<<"Enter the two integers : "<<endl;

tl.input();

cout<<"Sum of two integers : "<<tl.sum()<<endl;
cout<<"Enter the two floats : "<<end|;

t2.input();

cout<<"Sum of two floats : "<<t2.sum()<<endl;
getch();

}

Output :

Enter the two integers :

3

4

Sum of two integers : 7

Enter the two floats :3.5
6.5

Sum of two floats : 10

’rogram-2

#tinclude<iostream.h>
#tinclude<conio.h>
class test2;

class testl

{

private:

int a;

public:

void inputl()

/irtual base class

Virtual base class used in virtual inheritance in a way of preventing
multiple instances of a given class appearing in an inheritance
hierarchy when using multiple inheritance.

Abstract classes:
Abstract class is one that is not used to create objects.

Abstract class is designed only to act as a base class(to be inherited b
other classes)

It is a desigh concept in program development and provides a base
upon which other classes may be built.

	UNIT 1.pdf
	unit2.pdf
	UNIT 3.pdf
	UNIT 4.pdf
	unit 5.pdf

